Conformational Changes and Oxidation of Membrane Proteins in Senescent Human Erythrocytes

  • Augusta Brovelli
  • Maria A. Castellana
  • Giampaolo Minetti
  • Giampiero Piccinini
  • Claudio Seppi
  • Maria R. De Renzis
  • Cesare Balduini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


Human red cells spend 120 days in the circulation and are then removed in an age-dependent manner (1). Since cell destruction is age-dependent, studies about red cell senescence focused on the mechanisms by which the aging of the cell leads to its destruction. The presence of autoantibodies on the surface of senescent cells produced the development of the autoimmune hypothesis for senescent cell removal from the circulation (2–4), and raised questions about the presence of senescence markers on the cell surface that permit such recognition and the mechanisms of their development during red cell life span. Studies on surface changes taking place during red cell senescence have been carried out mainly on density-separated red cells (5). A reduction in membrane surface area in the dense cell population is evident as a decrease in membrane cholesterol and phospholipid content (6,7) and in acetylcholinesterase activity and sialic acid content (8). Cell deformability decreases (9–12) and at the level of the membrane slight modifications of the covalent structure of some components have been described, produced by processes like oxidation (13–15), proteolysis (16, 17), glycation (18), methylation and transamidation (19), phosphorylation (20), and modifications of phospholipid asimmetry (21) and of topology and topography of proteins have been reported or hypothesized (22–25). Most of these modifications are effective in promoting autoantibody binding and/or phagocytosis in vitro, thus supporting a possible role of these mechanisms in determining recognition and removal of senescent cells. Investigations carried out with in vivo (26,27) and in vitro models (28,29) for red cell senescence and studies with mutant erythrocytes showed that oxidation plays a relevant role in determining surface properties of senescent cells and of many pathological cells with a decreased life span (30–32). Since the oxidative state of membrane proteins in human red cells of different age has not been investigated in detail in the past, we tried to quantitate the oxidative lesion the membrane proteins undergo during red cell life-span, in an attempt to understand what kind of membrane processes expressed in senescent red cells can be related to oxidation.


Human Erythrocyte Senescent Cell Coomassie Blue Staining Senescence Marker Methionine Sulfoxide Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Eadie and I. W. Brown, Red blood cell survival studies, Blood 8:1110 (1953).PubMedGoogle Scholar
  2. 2.
    M. M. B. Kay, Mechanism of removal of senescent cells by human macrophages “in situ”, Proc. Natl. Acad. Sci. USA 72:3521 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    M. M. B. Kay, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9:555 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    H. U. Lutz and G. Stringaro-Wipf, Senescent red cell-bound IgG is attached to band 3 protein, Biomed. Biochim. Acta 42:S117 (1983).PubMedGoogle Scholar
  5. 5.
    M. R. Clark, Senescence of red blood cells: progress and problems, Physiol. Rev. 68:503 (1988).PubMedGoogle Scholar
  6. 6.
    M. P. Westerman, L. E. Pierce and W. N. Jensen, Erythrocyte lipids: a comparison of normal young and normal old populations, J. Lab. Clin. Med. 62:394 (1963).PubMedGoogle Scholar
  7. 7.
    C. C. Winterbourn and R. D. Batt, Lipid composition of human red cells of different ages, Biochim. Biophys. Acta 202:1 (1970).PubMedGoogle Scholar
  8. 8.
    N. S. Cohen, J. E. Ekholm, M. G. Luthra and D. J. Hanahan, Biochemical characterization of density-separated human erythrocytes, Biochim. Biophys. Acta 419:229 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    M. R. Clark, N. Mohandas and S. B. Shohet, Osmotic gradient ektacytometry: comprehensive characterization of red cell volume and surface maintenance, Blood 61:899 (1983).PubMedGoogle Scholar
  10. 10.
    G. B. Nash and H. J. Meiselman, Red Cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging, Biophys. J. 43:63 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    R I. Weed, The importance of erythrocyte deformability, Am. J. Med. 49:147 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    A. R. Williams and D.R. Morris, The internal viscosity of the human erythrocyte may determine its life-span in vivo, Scand. J. Haematol. 24:57 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    L. M. Snyder, L. Leb, J. Piotrowski, N. Sauberman, S. C. Liu and N. L. Fortier, Irreversible spectrin-haemoglobin crosslinking in vivo: a marker for red cell senescence, Brit. J. Haematol. 53:379 (1983).CrossRefGoogle Scholar
  14. 14.
    H. Q. Campwala and J. F. Desforges, Membrane-bound hemichrome in density-separated cohorts of normal (AA) and sickled (SS) cells, J. Lab. Clin. Med. 99:25 (1982).PubMedGoogle Scholar
  15. 15.
    S. K. Jain, Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes, Biochim. Biophys. Acta 937:205 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Morrison, K. S. Au and L. Hsu, Are the red cell proteases a clock mechanism which turns on a signal of senescence?, Biomed. Biochim. Acta 46:S79 (1987).PubMedGoogle Scholar
  17. 17.
    M. M. B. Kay and J. R. Goodman, IgG antibodies do not bind to band 3 in intact erythrocytes; enzymatic treatment of cells is required for IgG binding, Biomed. Biochim. Acta 43:841 (1984).PubMedGoogle Scholar
  18. 18.
    S. P. Sutera, R. A. Gardner, C. W. Boylan, G. L. Carrol, K. C. Chang, J. S. Marvel, C. Kilo, B. Gonen and J. R. Williamson, Age-related changes in deformability of human erythrocytes, Blood 65:275 (1985).PubMedGoogle Scholar
  19. 19.
    J. R. Barber and S. Clarke, Membrane protein carboxyl methylation increases with human erythrocyte age, J. Biol. Chem. 258:1189 (1983).PubMedGoogle Scholar
  20. 20.
    G. Fairbanks, J. Palek, J. E. Dino and P. A. Liu, Protein kinase and membrane protein phosphorylation in normal and abnormal human erythrocytes: variation related to mean cell age, Blood 61:850 (1983).PubMedGoogle Scholar
  21. 21.
    R. A. Schlegel, L. McEvoy, M. Weiser and P. Williamson, Phospholipid organization as a determinant of red cell recognition by the reticuloendothelial system, in: “Red blood cells as carriers for drugs-Potential therapeutic applications”, C. Ropars, M. Chassaigne and C. Nicolau eds., Vol. 67, Pergamon Press, Oxford (1987).Google Scholar
  22. 22.
    E. Schweizer, W. Angst and H. U. Lutz, Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation, Biochemistry 21:6807 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    H. U. Lutz, R. Flepp and G. Stringaro-Wipf, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells, J. Immunol. 133:2610 (1984).PubMedGoogle Scholar
  24. 24.
    P. S. Low, S. M. Waugh, K. Zinke and D. Drenckhahn, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227:531 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    M. M. B. Kay, G. J. C. G. M. Bosman and C. Lawrence, Functional topography of band 3: specific structural alteration linked to functional aberrations in human erythrocytes, Proc. Natl. Acad. Sci. U.S.A. 85:492 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    G. J. Johnson, D. W. Allen, T. P. Flynn, B. Finkel and J. G. White, Decreased survival ‘in vivo’ of diamide-incubated dog erythrocytes, J. Clin. Invest. 66:955 (1980).PubMedCrossRefGoogle Scholar
  27. 27.
    M. M.B. Kay, G. J. C. G. M. Bosman, S. S. Shapiro, A. Bendich and P. S. Bassel, Oxidation as a possible mechanism of cellular aging: vitamin E deficiency causes premature aging and IgG binding to erythrocytes. Proc. Natl. Acad. Sci.USA 83:2463 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Arese, F. Bussolino, R. Flep, P. Stammler, S. Fasler and H. U. Lutz, Diamide enhances phagocytosis of human red cell in a complement and anti band 3 antibody-dependent process, Biomed. Biochim. Acta 46:S84 (1987).PubMedGoogle Scholar
  29. 29.
    M. Beppu, A. Mizukami, M. Nagoya and K. Kikugawa, Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes, J. Biol. Chem. 265:3226 (1990).PubMedGoogle Scholar
  30. 30.
    B. H. Rank, J. Carlsson and R.P. Hebbel, Abnormal redox status of membrane-protein thiols in sickle erythrocytes, J. Clin. Invest. 75:1531 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    P. S. Becker, J. S. Morrow and S. E. Lux, Abnormal oxidant sensitivity and-chain structure of spectrin in hereditary spherocytosis associated with defective spectrin-4.1 binding, J. Clin. Invest. 80:557 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Arese and A. De Flora, Pathophysiology of hemolysis in glucose-6-phosphate dehydrogenase deficiency, Semin. Hematol. 27:1 (1990).PubMedGoogle Scholar
  33. 33.
    N. S. Kosower, E. M. Kosower and B. Wertheim, Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide, Biochem. Biophys. Res. Commun. 37:593 (1969).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Beutler, C. West and K. G. Blume, The removal of leukocytes and plateles from whole blood, J. Lab. Clin. Med. 88:328 (1976).PubMedGoogle Scholar
  35. 35.
    A. Brovelli, C. Seppi, G. Pallavicini and C. Balduini, Membrane processes during ‘in vivo’ aging of human erythrocytes, Biomed. Biochim. Acta 42:S122 (1983).PubMedGoogle Scholar
  36. 36.
    J. R. Murphy, Influence of temperature and method of centrifugation on the separation of erythrocytes, J. Lab. Clin. Med. 82:334 (1973).PubMedGoogle Scholar
  37. 37.
    W. J. Griffiths, The determination of creatine in body fluid and muscle and of phosphocreatine in muscle, using the autoanalyzer, Clin. Chim. Acta 9:210 (1964).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Fehr and M. Knob, Comparison of red cell creatine level and reticulocyte count in appraising the severity of hemolytic processes, Blood 53:966 (1979).PubMedGoogle Scholar
  39. 39.
    V.T. Marchesi and J. E. Palade, The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes, J. Cell Biol. 35:385 (1967).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Yamamoto, T. Sekine and Y. Kanaoka, Fluorescent thiol reagents-Fluorescent tracer method for protein SH groups using N-(7-dimethylamino-4-methyl-coumarinyl) maleimide. An application to the proteins separated by SDS-polyacrylamide gel electrophoresis, Anal. Biochem. 79:83 (1977).PubMedCrossRefGoogle Scholar
  41. 41.
    A. Brovelli, C. Seppi, A. M. Castellana, M. R. De Renzis, A. Blasina and C. Balduini, Oxidative lesion to membrane proteins in senescent erythrocytes, Biomed. Biochim. Acta 49:S218 (1990).PubMedGoogle Scholar
  42. 42.
    E. Nigg, M. Kessler and R. J. Cherry, Labeling of human erythrocyte membranes with eosin probes used for protein diffusion measurements-Inhibition of anion transport and photooxidative inactivation of acetylcholinesterase, Biochim. Biophys. Acta 550:328 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Chiba, Y. Sato and Y. Suzuki, Characterization of eosin 5-isothiocyanate binding site in band 3 protein of the human erythrocyte, Biochim. Biophys. Acta 897:14 (1987).PubMedCrossRefGoogle Scholar
  44. 44.
    M. K. Ho and G. Guidotti, A membrane protein from human erythrocytes involved in anion exchange, J. Biol. Chem. 250:675 (1975).PubMedGoogle Scholar
  45. 45.
    C. Seppi, M. A. Castellana, G. Minetti, G. Piccinini, C. Balduini and A. Brovelli, Evidence for membrane protein oxidation during ‘in vivo’ aging of human erythrocytes, Mech. Age. Dev. in press.Google Scholar
  46. 46.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680 (1970).PubMedCrossRefGoogle Scholar
  47. 47.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  48. 48.
    E. Beutler, The preparation of red cells for assay, in “Red cell metabolism — A manual of Biochemical methods” 3rd edition, Grune and Stratton, New York (1984).Google Scholar
  49. 49.
    D. Jay and L. Cantley, Structural aspects of the red cell anion exchange protein, Ann. Rev. Biochem. 55:511 (1986).PubMedCrossRefGoogle Scholar
  50. 50.
    R. L. Levine, C. N. Oliver, R. M. Fulks and E. R. Stadtman, Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis, Proc. Natl. Acad. Sci. USA 78:2120 (1981).PubMedCrossRefGoogle Scholar
  51. 51.
    A. J. Rivett, Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases, J. Biol. Chem. 260:300 (1985).PubMedGoogle Scholar
  52. 52.
    K. J. A. Davies and A. L. Goldberg, Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells, J. Biol. Chem. 262:8227 (1987).PubMedGoogle Scholar
  53. 53.
    M. Morrison, A. W. Michaels, D. R. Phillips and S. Choi, Life span of erythrocyte membrane protein, Nature 248:763 (1974).PubMedCrossRefGoogle Scholar
  54. 54.
    R. S. Schwartz, A. C. Rybicki, R. Health and B. H. Lubin, Protein 4.1 in sickle erythrocytes-Evidence for oxidative damage, J. Biol. Chem. 262:15666 (1987).PubMedGoogle Scholar
  55. 55.
    L. C. Wolfe, A. M. Byrne and S. E. Lux, Molecular defect in the membrane skeleton of blood bank-stored red cells, J. Clin. Invest. 78:1681 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    G. M. Wagner, D. T-Y. Chiu, J-H. Qju, R. H. Heath and B. H. Lubin, Spectrin oxidation correlates with membrane vesciculation in stored RBCs, Blood 69:1777 (1987).PubMedGoogle Scholar
  57. 57.
    N. Brot, L. Weissbach, J. Werth and H. Weissbach, Enzymatic reduction of protein-bound methionine sulfoxide, Proc. Natl. Acad. Sci. USA 78:2155 (1981).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Spector, R. Scotto, H. Weissbach and N. Brot, Lens methionine sulfoxide reductase, Biochem. Biophys. Res. Commun. 108:429 (1982).PubMedCrossRefGoogle Scholar
  59. 59.
    M. M. B. Kay, S. R. Goodman, K. Sorensen, C. F. Whitfield, P. Wong, L. Zaki and V. Rudloff, Senescent cell antigen is immunologically related to band 3, Proc. Natl. Acad. Sci. USA 80:1631 (1983).PubMedCrossRefGoogle Scholar
  60. 60.
    M. M. B. Kay, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81:5753 (1984).PubMedCrossRefGoogle Scholar
  61. 61.
    H. Mueller and H. U. Lutz, Binding of autologous IgG to human red blood cells before and after ATP-depletion — Selective exposure of binding sites (autoantigens) on spectrin-free vesicles, Biochim. Biophys. Acta 729:249 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Augusta Brovelli
    • 1
  • Maria A. Castellana
    • 1
  • Giampaolo Minetti
    • 1
  • Giampiero Piccinini
    • 1
  • Claudio Seppi
    • 1
  • Maria R. De Renzis
    • 1
  • Cesare Balduini
    • 1
  1. 1.Department of BiochemistryUniversity of PaviaPaviaItaly

Personalised recommendations