Advertisement

KCl Cotransport in HbAA and HbSS Red Cells: Activation by Intracellular Acidity and Disappearance During Maturation

  • J. Clive Ellory
  • Andrew C. Hall
  • Susan A. Ody
  • Carlos E. Poli de Figueiredos
  • Susan Chalder
  • John Stuart
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)

Summary

Low intracellular pH was shown to be a potent activator of the KCl cotransport system in HbSS red cells, and in reticulocyte-rich fractions of HbAA red cells. Rheological experiments indicated that cell dehydration via the KCl cotransporter in response to low pH decreased the filterability of HbSS red cells. In vitro maturation experiments showed that the KCl cotransport system was rendered cryptic rapidly, in contrast to choline transport, and serine transport via system ASC, which disappeared much more slowly.

Keywords

High Hydrostatic Pressure Mean Cell Volume Choline Transport Mean Cell Haemoglobin Concentration Amino Acid Transport Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Canessa, A. Spalvin and R. L. Nagel, Volume dependent and NEM-stimilated K, Cl transport is elevated in oxygenated SS, Sc and CC human red cells, FEBS letts, 200:197 (1986).CrossRefGoogle Scholar
  2. 2.
    A. C. Hall and J. C. Ellory, The effects of high hydrostatic pressure on ‘passive’ monovalent cation transport in human red blood cells, J. Membrane Biol., 94:1 (1986a).CrossRefGoogle Scholar
  3. 3.
    M. Canessa, M. E. Fabry, N. Blumenfeld, R.L. Nagel, Volume-stimulated Cl-dependent K efflux is highly expressed in young human red cells containing normal hemoglobin or HbS, J. Membrane Biol., 97:97 (1987).CrossRefGoogle Scholar
  4. 4.
    J. C. Ellory and A. C. Hall, Human red cell volume regulation in hypotonic media, Comp. Biochem. Physiol. 90A: 533 (1988).CrossRefGoogle Scholar
  5. 5.
    R. M. Johnstone and K. Teng, Membrane remodelling during reticulocyte maturation, News in Physiological Sciences 4:37 (1989).Google Scholar
  6. 6.
    V. L. Lew and R. M. Bookchin, Volume, pH and ion-content regulation in human red cells: Analysis of transient behaviour with an integrated model, J. Membrane Biol. 92:57 (1986).CrossRefGoogle Scholar
  7. 7.
    D. Kaji, Volume-sensitive K transport in human erythrocytes, J. Gen. Physiol. 88:719 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    A. C. Hall and J. C. Ellory, Evidence for the presence of volume-sensitive KCl transport in ‘young’ human red cells, Biochim. Biophys. Acta 858:317 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    J. C. Ellory, A. C. Hall and S. A. Ody, Is acid a more potent activator of KCl co-transport than hypotonicity in human red cells? J. Physiol., 420:149P (1989).Google Scholar
  10. 10.
    C. Brugnara and D. C. Tosteson, Cell volume, K transport and cell density in human erythrocytes, Amer. J. Physiol., 252:C269 (1987).PubMedGoogle Scholar
  11. 11.
    J. C. Ellory, P. B. Dunham, P. J. Logue and G. W. Stewart, Anion-dependent cation transport in erythrocytes, Phil. Trans. Roy. Soc. (London), B299:483 (1982).CrossRefGoogle Scholar
  12. 12.
    P. K. Lauf, N. C. Adragna and R. P. Garay, Activation by N-ethylmaleimide of a latent KCl: flux in human red blood cells, Amer. J. Physiol. 246:C385 (1984).PubMedGoogle Scholar
  13. 13.
    P. B. Dunham and P. J. Logue, Potassium-chloride cotransport in resealed human red cell ghosts 250:C578 (1986).Google Scholar
  14. 14.
    J. R. Sachs, Volume-sensitive K influx in human red cell ghosts, J. Physiol. 92:685 (1988).Google Scholar
  15. 15.
    J. Funder and J. O. Weith, Chloride and hydrogen ion distribution between human red cells and plasma, Acta Physiol. Scand. 68:234 (1966).CrossRefGoogle Scholar
  16. 16.
    K. Kirk, P. W. Kuchel and R. J. Labotka, Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions, Biophysical J. 54:241 (1988).CrossRefGoogle Scholar
  17. 17.
    J. D. Young and J. C. Ellory, in “Red Cell Membranes — A Methodological Approach”. Eds J. C. Ellory and J. D. Young, Academic Press, London.Google Scholar
  18. 18.
    J. V. Dacie and S. M. Lewis, “Practical Haematology”, 5th ed. Churchill Livinstone, London.Google Scholar
  19. 19.
    J. Stuart, P. C. W. Stone, D. Bareford, N. M. Caldwell, J. E. Davies and S. Barr, Evaluation of leucocyte removal methods for studies of erythrocyte deformability, Clin. Hemorheol, 5:137 (1985).Google Scholar
  20. 20.
    M. N. Johnston, J. C. Ellory and J. Stuart, Bepridil protects sickle cells against the adverse rheological effects of cyclical deoxygenation, Br. J. Haematol, 73:522 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Dormandy, P. Flute, A. Matrai, L. Bogar, J. Mikita, G. D. O. Lowe, J. Anderson, S. Chien, E. Schmalzer and A. Herschenfeld, The new St. George’s blood filtrometer, Clin. Hemorheol. 5:975 (1985).Google Scholar
  22. 22.
    Y. Y. Bilto, M. Player, M. J. West, J. C. Ellory and J. Stuart, Effects of oxpentifylline on erythrocyte cation content, hydration and deformability, Clin. Hemorheol. 7:561 (1987).Google Scholar
  23. 23.
    J. C. Ellory, A. C. Hall, S. O. Ody, H. C. Englert, D. Mania and H. J. Lang, Selective inhibitors of KCl cotransport in human red cells, FEBS Letters, 262:215 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    A. C. Hall, L. Bianchini and J. C. Ellory, Pathways for cell volume regulation via potassium and chloride loss, in: “Ion Transport”, D. Keeling and C. Benham, ed.,Academic Press, London (1989), pp. 217–235.Google Scholar
  25. 25.
    C. Brugnora, T. Van Ha and D. C. Tosteson, Acid pH induces formation of dense cells in sickle erythrocytes, Blood, 74:487 (1989).Google Scholar
  26. 26.
    V. L. Lew, C. J. Freeman, O. E. Ortiz and R. M. Bookchin, A new hypothesis on the origin of irreversibly sickled cells (ISCs): Predictions from an integrated reticulocyte model, Clinical Research 36:567A (1988).Google Scholar
  27. 27.
    J. A. Halperin, C. Brugnara, M. T. Tosteson, T. Van Ha and D. C. Tosteson, Voltage-activated cation transport in human erythrocytes, Amer. J. Physiol. 257:C986 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Clive Ellory
    • 1
  • Andrew C. Hall
    • 1
  • Susan A. Ody
    • 1
  • Carlos E. Poli de Figueiredos
    • 1
  • Susan Chalder
    • 2
  • John Stuart
    • 2
  1. 1.Department of PhysiologyUniversity of OxfordOxfordUSA
  2. 2.Department of HaematologyUniversity of Birmingham, Medical SchoolBirminghamUSA

Personalised recommendations