Opsonic Potential of C3b-Anti-Band 3 Complexes when Generated on Senescent and Oxidatively Stressed Red Cells or in Fluid Phase

  • Hans U. Lutz
  • Pia Stammler
  • Daniel Kock
  • Ronald P. Taylor
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


Covalently linked complexes of complement component C3b and IgG (C3b-IgG complexes) were found predominantly on senescent rather than young red cells (1,2). They contained anti-band 3 as verified after cleavage of the hydroxylamine sensitive bond between C3b and IgG by studying the specificity of the liberated and purified IgG molecules (3,4). Two aspects of these C3b-IgG complexes are striking: a) their apparently exclusive formation with anti-band 3 and b) their presumptive opsonic potency as judged from comparison with artificially made C3b-IgG complexes (5–7).


Fluid Phase Swiss Federal Institute Thioester Bond Oligomerized Band Erythrocyte Membrane Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. U. Lutz, S. Fasler, P. Stammler, F. Bussolino and P. Arese, Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells, Blood Cells 14:175 (1988).PubMedGoogle Scholar
  2. 2.
    H. U. Lutz, P. Stammler, C. Further and S. Fasler, “Anti-Bande 3”-Antikorper aktivieren Komplement liber den alternative Weg, Schweiz. med. Wschr. 117:1821 (1987).PubMedGoogle Scholar
  3. 3.
    S. Flaser, PhD Thesis No. 8777 ETH, Charakterisierung erythrozyten-assoziarter IgG-und Komplementfaktoren, ETH-Zurich:, 1989.Google Scholar
  4. 4.
    H. U. Lutz, Erythrocyte Clearence, in “Blood Cell Biochemistry, 1 Erythroid Cells”, J. R. Harris, Plenum Press, New York and London (1990) p. 81.Google Scholar
  5. 5.
    L. F. Fries, S. A. Siwik, A. Malbran and M. M. Frank, Phagocytosis of target particles bearing C3b-IgG covalent complexes by human monocytes and polymorphonuclear leucocytes, Immunology 62:45 (1987).PubMedGoogle Scholar
  6. 6.
    A. Malbran, M. M. Frank and L. F. Fries, Interactions of monomeric IgG bearing covalently bound C3b with polymorphonuclear leucocytes, Immunology 61:15 (1987).PubMedGoogle Scholar
  7. 7.
    K. A. Joiner, L. F. Fries, M. A. Schmetz and M. M. Frank, IgG bearing covalently bound C3b has enhanced bactericidal activity for Escherichia coli O111, J. Exp. Med. 162:877 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    R. B. Sim, T. M. Twose, D. S. Paterson and E. Sim, The covalent-binding reaction of complement component C3, Biochem. J. 193:115 (1981).PubMedGoogle Scholar
  9. 9.
    Y. Takata, N. Tamura and T. Fujita, Interaction of C3 with antigen-antibody complexes in the process of solubilization of immune precipitates, J. Immunol. 132:2531 (1984).PubMedGoogle Scholar
  10. 10.
    K. J. Gadd and K. B. M. Reid, The binding of complement component C3 to antibody-antigen aggregates after activation of the alternative pathway in human serum, Biochem. J. 195:471 (1981).PubMedGoogle Scholar
  11. 11.
    R. J. Jacobs and M. Reichlin, Generation of low M. W., C3-bearing immunoglobulin in human serum, J. Immunol. 130:2775 (1983).PubMedGoogle Scholar
  12. 12.
    J. Kulics, E. Rajnavölgyi, G. Füst and J. Gergely, Interaction of C3 and C3b with immunoglobulin G, Mol. Immunol. 20:805 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    H. U. Lutz, S. Fasler and P. Stammler, An affinity for complement C3 as a possible reason for the potency of naturally occurring antibodies in mediating tissue homeostasis, in: “Beiträge zur Infusionstherapie,” K. H. Bässler, A. Grünert, H. Reissigl and K. Widlam, Karger, Basel (1989).Google Scholar
  14. 14.
    H. U. Lutz, P. Stammler and E. A. Fischer, Covalent binding of detergent-solubilized membrane glycoproteins to ‘Chemobond’ plates for ELISA, J. Immunol. Meth. 129:211 (1990).CrossRefGoogle Scholar
  15. 15.
    H. U. Lutz, P. Stammler and S. Fasler, How naturally occurring anti-band 3-antibodies stimulate C3b deposition to senescent and oxidatively stressed red blood cells, Biomed. Biochim. Acta 49:224 (1990).Google Scholar
  16. 16.
    L. F. Fries, T. A. Gaither, C. H. Hammer and M. M. Frank, C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I, J. Exp. Med. 160:1640 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Nicholson-Weller, J. Burge, D. T. Fearon, P. F. Weiler and K. F. Austen, Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system, J. Immunol. 129:184 (1982).PubMedGoogle Scholar
  18. 18.
    H. U. Lutz, F. Bussolino, R. Flepp, S. Fasler, P. Stammler, M. D. Kazatchkine and P. Arese, Naturally occurring anti-band 3 antibodies and complement together mediate phagocytosis of oxidatively stressed human red blood cells, Proc. Natl. Acad. Sci. USA 84:7368 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    H. U. Lutz, R. Flepp and G. Stringaro-Wipf, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein of human red blood cells, J. Immunol. 133:2610 (1984)PubMedGoogle Scholar
  20. 20.
    Y. Reiter and Z. Fishelson, Targeting of complement to tumor cells by heteroconjugates composed of antibodies and of the complement component C3b, J. Immunol. 142:2771 (1989).PubMedGoogle Scholar
  21. 21.
    H. U. Lutz and G. Wipf, Naturally occurring autoantibodies to skeletal proteins from human red blood cells, J. Immunol. 128:1695 (1982).PubMedGoogle Scholar
  22. 22.
    C. H. Hammer, G. H. Wirtz, L. Renfer, H. D. Gresham and B. F. Tack, Large scale isolation of functionally active components of the human complement system, J. Biol. Chem. 256:3995 (1980).Google Scholar
  23. 23.
    J. C. Edberg, L. Tosic, E. L. Wright, W. M. Sutherland and R. P. Taylor, Quantitative analyses of the relationship between C3 consumption, C3b capture, and immune adherence of complement-fixing antibody/DNA immune complexes, J. Immunol. 141:4258 (1988).PubMedGoogle Scholar
  24. 24.
    L. Tosic, W. M. Sutherland, J. Kurek, J. C. Edberg and R. P. Taylor, Preparation of monoclonal antibodies to C3b immunization with c3b(i)-Sepharose, J. Immunol. Meth. 120:241 (1989).CrossRefGoogle Scholar
  25. 25.
    J. Cook, E. Fischer, C. Boucheix, M. Mirsrahi, M.-H. Jouvin, L. Weiss, R. M. Jack and M. D. Kazatchkine, Mouse monoclonal antibodies to the human C3b receptor, Mol. Immunol. 22:531 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    J. C. Edberg, E. Wright and R. T. Taylor, Quantitative analyses of the binding of soluble complement-fixing antibody/dsDNA immune complexes to CR1 on human red blood cells, J. Immunol. 139:3739 (1987).PubMedGoogle Scholar
  27. 27.
    M. Beppu, A. Mizukami, M. Nagoya and K. Kikugawa, Binding of anti-band 3 autoantibody to oxidatively damaged erythrocytes, J. Biol. Chem. 265:3226 (1990).PubMedGoogle Scholar
  28. 28.
    E. J. Victoria, S. W. Pierce, M. J. Branks and S. P. Masouredis, IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein, J. Lab. Clin. Med. 115:74 (1990).PubMedGoogle Scholar
  29. 29.
    S. W. Pierce, E. J. Victoria and S. P. Masouredis, Red cell autoantibodies characterized by competitive inhibition of 125I Rh alloantibody binding and by immunoprecipitation of membrane proteins, J. Lab. Clin. Med. in press (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hans U. Lutz
    • 1
  • Pia Stammler
    • 1
  • Daniel Kock
    • 1
  • Ronald P. Taylor
    • 2
  1. 1.Laboratory for BiochemistrySwiss Federal Institute of TechnologyETH-ZentrumSwitzerland
  2. 2.Dept. of BiochemistryUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations