Advertisement

Role and Mechanism of Hexokinase Decay During Reticulocyte Maturation and Cell Aging

  • Mauro Magnani
  • Luigia Rossi
  • Marzia Bianchi
  • Giordano Serafini
  • Vilberto Stocchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)

Abstract

Human red blood cells (RBC) as well as the erythrocytes of many mammals are removed from circulation at the end of their life by an impressively efficient biological mechanism that is not fully understood. It is commonly accepted that senescent erythrocytes are selectively recognized and removed from the circulation by spleen and liver macrophages (1), however, various mechanisms have been proposed to account for this selectivity (for a review see Blood Cells vol. 14, 1988). Among these, the immunologic mechanism of cellular removal is widely accepted although the precise identity of the senescent cell antigen(s) remains to be established and primary mechanism of red blood cell aging leading to immunoglobins and complement binding have yet to be elucidated.

Keywords

Proteolytic System Hexokinase Activity Glycolytic Rate Surface Immunoglobulin Senescent Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Berlin and P. D. Berk, The biological life of the red cell, in “The Red Blood Cell”, D. Mac M. Surgenor, ed., Academic Press, New York (1975)Google Scholar
  2. 2.
    G. Fornaini, Biochemical modifications during the life-span of the erythrocyte, Ital. J. Biochem. 16:257 (1967)Google Scholar
  3. 3.
    H. H. Lutz, Red cell density and red cell age, Blood Cells 14:76 (1988)Google Scholar
  4. 4.
    G. J. Brewer, General red cell metabolism, in “The Red Blood Cell”, D. Mac N. Surgenor, ed., Academic Press, New York (1975)Google Scholar
  5. 5.
    W. Siemens, M. Müller, R. Dumday, A. G. Holzhütter, J. Rathmann and S. M. Rapoport, Quantification of pathways of glucose utilization and balance of energy metabolism of rabbit reticulocytes, Eur. J. Biochem. 124:567 (1982)CrossRefGoogle Scholar
  6. 6.
    W. Siemens, W. Dubiel, M. Müller and S. M. Rapoport, Accuonting for the ATP-consuming processes in rabbit reticulocytes, Eur. J. Biochem. 139:101 (1984)CrossRefGoogle Scholar
  7. 7.
    C. Seaman, S. Wyss and S. Piomelli, The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death, Am. J. Haematol. 8:31 (1980)CrossRefGoogle Scholar
  8. 8.
    M. Magnani, E. Piatti, M. Serafini, F. Palma, M. Dachà and G. Fornaini, The age-dependent metabolic decline of the red blood cell, Mech. Ageing Dev. 22:295 (1983)PubMedCrossRefGoogle Scholar
  9. 9.
    T. A. Rapoport, R. Heinrich, G. Jacobash and S. Rapoport, A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes, Eur. J. Biochem 42:107 (1974)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Minakami and H. Yoshikawa, Studies on erythrocyte glycolysis. II Free energy changes and rate limitings step in erythrocyte glycolysis, J. Biochem. 59:139 (1966)PubMedGoogle Scholar
  11. 11.
    M. Magnani, V. Stocchi, M. Dachà and G. Fornaini, Regulatory properties of rabbit red blood cell hexokinase at conditions close to physiological, Biochim. Biophys. Acta 804:145 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    G. Fornaini, M. Magnani, A. Fazi, A. Accorsi, V. Stocchi and M. Dachà, Regulatory properties of human erythrocyte hexokinase during cell aging, Arch Biochem. Biophys. 239:352 (1985)PubMedCrossRefGoogle Scholar
  13. 13.
    A. Zimram, S. Torem and E. Beutler, The in vivo ageing of red cell enzymes: direct evidence of biphasic decay from polycythemic rabbits with reticulocytosis, Br. J. Haematol. 69:67 (1988)CrossRefGoogle Scholar
  14. 14.
    M. Magnani, L. Rossi, M. Bianchi, G. Fornaini, U. Benatti, L. Guida, E. Zocchi and A. De Flora, Improved metabolic properties of hexokinase-overloaded human erythrocytes, Biochim. Biophys. Acta 972:1 (1988)PubMedCrossRefGoogle Scholar
  15. 15.
    M. Magnani, S. Papa, L. Rossi, M. Vitale, G. Fornaini and F. A. Manzoli, Membrane-bound immunoglobulins increase during red blood cell aging, Acta Haemat. 79:127 (1988)PubMedCrossRefGoogle Scholar
  16. 16.
    M. Magnani, V. Stocchi, L. Chiarantini, G. Serafini, M. Dachà and G. Fornaini, Rabbit red blood cell hexokinase. Decay mechanism during reticulocyte maturation, J. Biol. Chem. 261:8327 (1986)PubMedGoogle Scholar
  17. 17.
    A. Hershko and A. Ciachanover, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51:335 (1982)PubMedCrossRefGoogle Scholar
  18. 18.
    M. Magnani, V. Stocchi, M. Dachà and G. Fornaini, Rabbit red blood cell hexokinase: intracellular distribution during reticulocytes maturation, Mol. Cell. Biochem. 63:59 (1984)PubMedCrossRefGoogle Scholar
  19. 19.
    V. Stocchi, M. Magnani, F. Canestrari, M. Dachà and G. Fornaini, Rabbit red blood cell hexokinase. Evidence for two distinct forms and their purification and characterization from reticulocytes, J. Biol. Chem. 256:7856 (1981)PubMedGoogle Scholar
  20. 20.
    V. Stocchi, M. Magnani, G. Piccoli and G. Fornaini, Hexokinase microheterogeneity in rabbit red blood cells and its behaviour during reticulocytes maturation, Mol. Cell Biochem. 79:133 (1988)PubMedCrossRefGoogle Scholar
  21. 21.
    M. Magnani, V. Stocchi, M. Dachà and G. Fornaini, Rabbit red bood cell hexokinase. Evidence for an ATP-dependent decay during cell maturation, Mol. Cell Biochem. 61:83 (1984)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Magnani, G. Serafini and V. Stocchi, Effects of Ca 2+ and lipoxygenase inhibitors on hexokinase degradation in rabbit reticulocytes, Mol. Cell Biochem. 85:3 (1989)PubMedCrossRefGoogle Scholar
  23. 23.
    T. Suzuki and G. Dale, Biotinylate erythrocytes: In vivo survival and in vitro recovery, Blood 70:719 (1987)Google Scholar
  24. 24.
    T. Suzuki and G. Dale, Senescent erythrocytes: Isolation of in vivo aged and their biochemical characteristics, Proc. Natl. Acad. Sci. U.S.A. 85:1647 (1985)CrossRefGoogle Scholar
  25. 25.
    G. Dale and S. L. Moremberg, Time dependent loss of adenosine 5′-monophosphate deaminase activity may explain elevated Adenosine 5′-triphosphate levels in senescent erythrocytes, Blood 74:2157 (1989)PubMedGoogle Scholar
  26. 26.
    E. Beutler, Isolation of the aged, Blood Cells 14:1 (1988)PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Mauro Magnani
    • 1
  • Luigia Rossi
    • 1
  • Marzia Bianchi
    • 1
  • Giordano Serafini
    • 1
  • Vilberto Stocchi
    • 1
  1. 1.Istituto di Chimica Biologica “Giorgio Fornaini”Università degli Studi di UrbinoItaly

Personalised recommendations