Molecular Mapping of the Active Site of an Aging Antigen

  • Marguerite M. B. Kay
  • John J. Marchalonis
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


An aging antigen, senescent cell antigen, resides on the 911 amino acid membrane protein band 3. It marks cells for removal by initiating specific IgG autoantibody binding (1–22). This appears to be a general physiologic process for removing senescent and damaged cells in mammals and other vertebrates (4). Although the initial studies were done using human erythrocytes as a model, senescent cell antigen occurs on all cells examined (4). The aging antigen itself is generated by the degradation of an important structural and transport membrane molecule, protein band 3 (5). Besides its role in the removal of senescent and damaged cells, senescent cell antigen also appears to be involved in the removal of erythrocytes in clinical hemolytic anemias (7,8), and the removal of malaria-infected erythrocytes (23,24). Oxidation generates senescent cell antigen in situ (6). Neither cross-linking nor hemoglobin appear to play a role. Although storage is the only in vitro model that mimics cellular aging in situ, we have discovered three alterations/mutations of band 3 that permit insight into aging in situ. One mutation with an addition to band 3 has normal or decelerated red cell aging. In contrast, another band 3 alteration with a suspected deletion or substitution that renders band 3 more susceptible to proteolysis, shows accelerated aging. The third alteration which is also more susceptible to proteolysis is associated with neurologic defects.


Human Erythrocyte Senescent Cell Anion Transport Antigenic Site Transport Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. M. B. Kay, Mechanism of removal senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci 72:3521 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    M. M. B. Kay, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9:555 (1978).PubMedCrossRefGoogle Scholar
  3. 3.
    G. D. Bennett and M. M. B. Kay, Homeostatic removal of senescent murine erythrocytes by splenic macrophages, Exp. Haematol. 9:297 (1981).Google Scholar
  4. 4.
    M. M. B. Kay, Isolation of the phagocytosis inducing IgG-binding antigen of senescent somatic cells, Nature 289:491 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    M. M. B. Kay, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. 81:5753 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    M. M. B. Kay, G. J. C. G. M. Bosman, S. S. Shapiro, A. Bendich and P.S. Bassel, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83:2463 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    M. M. B. Kay, N. Flowers, J. Goodman and G.J. Bosman, Alteration in membrane protein band 3 associated with accelerated erythrocyte aging, Proc. Natl. Acad. Sci. 86:5834 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    R. P. Hebbel and W. J. Miller, Phagocytosis of sickle erythrocytes. Immunologic and oxidative determinants of hemolytic anemia, Blood 64:733 (1984).PubMedGoogle Scholar
  9. 9.
    J. A. Singer, L. K. Jennings, C. Jackson, M.E. Doctker, M. Morrison and W.S. Walker, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83:5498 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    G. A. Glass, H. Gershon and D. Gershon, The effect of donor and cell age on several characteristics of rat erythrocytes, Exp. Hematol. 11:987 (1983).PubMedGoogle Scholar
  11. 11.
    G. A. Glass, D. Gershon and H. Gershon, Some characteristics of the human erythrocyte as a function of donor and cell age, Exp. Hematol. 13:1122 (1985).PubMedGoogle Scholar
  12. 12.
    G. Bartosz, M. Sosynski and J. Kredziona, Aging of the erythrocyte. VI. Accelerated red cell membrane aging in Down’s syndrome, Cell Biol. Int. Rep. 6:73 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Bartosz, M. Sosynski and A. Wasilewski, Aging of the erythrocyte. XVII. Binding of autologous immunoglobulin, Mech. Aging Dev. 20:223 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Khansari, G. F. Springer, E. Merler and H.H. Fudengerg, Mechanisms for the removal of senescent human erythrocytes from circulation: specificity of the membrane-bound immunoglobulin G., J. Mech. Aging Dev. 21:49 (1983).CrossRefGoogle Scholar
  15. 15.
    N. Khansari and H. H. Fudenberg, Immune elimination of autologous senescent erythrocytes by Kupffer cells in vivo, Immunol. 80:426 (1983).Google Scholar
  16. 16.
    E. M. Alderman, H. H. Fudenberg and R. E. Lovins, Binding of immunoglobulin classes to subpopulations of human red blood cells separated bydensity-gradient centrifugation, Blood 55:817 (1980).PubMedGoogle Scholar
  17. 17.
    C. H. Tannert, Untersuchungen zum altern roter blutzellen, Ph.D. Thesis, Humboldt University, Berlin, GDR (1978).Google Scholar
  18. 18.
    G. Wegner, C. H. Tannert, D. Maretzki, W. Schossler and D. Stanss, IgG Binding to glucose depleted and preserved erythrocytes, 9th Int. Symp. Struct. Function Erythroid Cells, Berlin GDR 57 (1980).Google Scholar
  19. 19.
    W. S. Walker, J. A. Singer, M. Morrison and C.W. Jackson, Preferential phagocytosis of in vivo aged murine red blood cells by a macrophage-like cell line, Br. J. Haematol. 58:259 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    M. M. B. Kay, S. Goodman, K. Sorensen, C. Whitfield, P. Wong, L. Zaki, V. Rudloff, The senescent cell antigen is immunologically related to band 3, Proc. Natl. Acad. Sci. 80:1631 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    H. U. Lutz, R. Flepp and G. Stringaro-Wipf, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells, J. Immunol. 133:2160 (1984).Google Scholar
  22. 22.
    H. Miller and H.U. Lutz, Binding of autologous IgG to human red blood cells before and after ATP-depletion. Selective exposure of binding sites (autoantigens) on spectrin-free vesicles, Biochim. Biophys. Acta 729:249 (1983).CrossRefGoogle Scholar
  23. 23.
    M. J. Friedman, M. Fukuda and R. A. Laine, Evidence for a malarial parasite interaction site on the major transmembrane protein of the human erythrocyte, Science 228:75 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    A. R. Dluzewski, K. Rangachari, M. J. Tanner, et al., Inhibition of malarial invasion by intracellular antibodies against intrinsic membrane proteins in the red cell, Parasitology 93:427 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    M. M. B. Kay, G. Bosman, M. Notter, et al., Life and death of neurons: The role of senescent cell antigen, Ann. N.Y. Acad. Sci. 521:155 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    M. M. B. Kay, C. M. Tracey, J. R. Goodman, et al., Polypeptides immunologically related to erythrocyte band 3 are present in nucleated somatic cells, Proc. Natl. Acad. Sci. 80:6882 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    D. R. Demuth, L. C. Showe, M. Ballantine, A. Palumbo, P.J. Fraser, L. Cioe, G. Rovera and P.J. Curtis, Cloning and structural characterization of a human non-erythroid band 3-like protein. EMBO Journal 5:1205 (1986).PubMedGoogle Scholar
  28. 28.
    R. R. Kopito and H. F. Lodish, Structure of the murine anion exchange protein, J. Cell. Biochem. 29:1 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    K. E. Kudrycki and G. E. Shull, Primary structure of the rat kidney band 3 anion exchange protein deduced from a cDNA, J. Biol. Chem. 264:8185 (1989).PubMedGoogle Scholar
  30. 30.
    S. L. Alper, R. R. Kopito, S. M. Libresco and H. Lodish, Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line, J. Biol. Chem. 263:17092 (1988).PubMedGoogle Scholar
  31. 31.
    D. J. Hazen-Martin, G. Pasternack, S. S. Spicer and D.A. Sens, Immunolocalization of band 3 protein in normal and cystic fibrosis skin, J. Histochem. Cytochem. 34:823 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    V. L. Schuster, S. M. Bonsib and M. L. Jennings, Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry, Am. J. Physiol. 251:C347 (1986).PubMedGoogle Scholar
  33. 33.
    S. Kellokumpu, L. Neff, S. Jamsa-Kellokumpu, R. Kopito and R. Baron, A 115-kD polypeptide immunologically related to erythrocyte band 3 is present in Golgi membranes, Science 242:1308 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    M. L. Jennings, M. P. Anderson and R. Monaghan, Monoclonal antibodies against human erythrocyte band 3 protein. Localization of proteolytic cleavage sites and stilbenedisulfonate-binding lysine residues, J. Biol. Chem. 261:9002 (1986).PubMedGoogle Scholar
  35. 35.
    J. Falke, K. J. Kanes and S. I. Chan, The minimal structure containing the band 3 anion transport site. A 35CI NMR study, J. Biol. Chem. 260:13294 (1985).PubMedGoogle Scholar
  36. 36.
    P. J. Bjerrum, J. O. Wieth and S. Minakami, Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein, J. Gen. Physiol. 81:453 (1983).PubMedCrossRefGoogle Scholar
  37. 37.
    T. L. Steck, The organization of proteins in human red blood cell membranes, J. Cell. Biol. 62:1 (1974).PubMedCrossRefGoogle Scholar
  38. 38.
    S. R. Goodman and K. Shiffer, The spectrin membrane skeleton of normal and abnormal human erythrocytes: A review, Am. J. Physiol. 244:C121 (1983).PubMedGoogle Scholar
  39. 39.
    V. Bennett, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells, Nature, Lond. 281:597 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    J. V. Cox and E. Lazarides, Alternative primary structures in the transmembrane domain of the chicken erythroid anion transporter, Mol. Cell. Biol. 8:1327 (1988).PubMedGoogle Scholar
  41. 41.
    M. J. A. Tanner, P. G. Martin and S. High, The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence, Biochem. J. 256:703 (1988).PubMedGoogle Scholar
  42. 42.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, Lond. 227:680 (1970).CrossRefGoogle Scholar
  43. 43.
    H. Towbin, T. Staehelin and J. Gordon, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. 76:4350 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    M. M. B. Kay, K. Sorensen, P. Wong and P. Bolton, Antigenicity, storage & aging: Physiological autoantibodies to cell membrane and serum proteins and the senescent cell antigen, Mol. Cell. Biochem. 49:65 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    M. M. B. Kay, Immunologic techniques for analyzing red cell membrane proteins, in: “Methods in Hematology: Red Cell Membranes”, S. Shohet and N. Mohandas, eds. Churchill Livingston, Inc. New York (1988).Google Scholar
  46. 46.
    M. M. B. Kay, Red cell aging: Senescent cell antigen, band 3, and band 3 mutations associated with cellular dysfunction, Proc. Clin. Biol. Res. 318:199 (1989).Google Scholar
  47. 47.
    P. Yam, L. D. Petz and P. Spath, Detection of IgG sensitization of red cells with 125I staphycoccal protein A, Am. J. Hematol. 12:337 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660 (1949).CrossRefGoogle Scholar
  49. 49.
    M. M. B Kay, Multiple labeling technique used for kinetic studies of activated human B lymphocytes, Nature, Lond. 254:424 (1975).CrossRefGoogle Scholar
  50. 50.
    J. Devereux, P. Haeberli and O. Smithies, A comprehensive set of sequence analysis programs for the VAX, Nucleic Acid Res. 12:387 (1984).PubMedCrossRefGoogle Scholar
  51. 51.
    L. Zaki, Anion transport in red blood cells and arginine specific reagents. (1) Effect of chloride and sulfate ions on phenylglyoxal sensitive sites in the red blood cell membrane, Biochem. and Biophys. Res. Comm. 110:616 (1983).CrossRefGoogle Scholar
  52. 52.
    M. M. B. Kay, J. J. Marchalonis, J. Hughes, J. Hughes, L. Watanabe and S.F. Schluter, Definition of a physiologic aging autoantigen using synthetic peptides of membrane protein band 3: Localization of the active antigenic sites, Proc. Natl. Acad. Sci. USA, in press (1990).Google Scholar
  53. 53.
    D. M. Engelman, T. A. Steitz and A. Goodman, Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins, Ann. Rev. Biophys. Com. 15:321 (1986).CrossRefGoogle Scholar
  54. 54.
    J. Kite and R. F. Doolittle, A simple method of displaying the hydropathic character of a protein, J. Mol. Biol. 157:105 (1982).CrossRefGoogle Scholar
  55. 55.
    M. M. B. Kay, F. Lin, G. Bosman, J. Marchalonis and S. Schluter, Human erythrocyte aging: Cellular and molecular biology, Trans. Med. Revs., in press (1990).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marguerite M. B. Kay
    • 1
  • John J. Marchalonis
    • 1
  1. 1.University of Arizona Health Sciences Center Dept. of Microbiology and ImmunologyUniversity of ArizonaTucsonUSA

Personalised recommendations