Phagocytosis of Phenylhydrazine Oxidized and G-6-PD Deficient Red Blood Cells: The Role of Sugars and Cell-Bound Immunoglobulins

  • Sara Horn
  • Nava Bashan
  • Shimon Moses
  • Jacob Gopas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


Senescent or damaged red blood cells (RBCs) are selectively removed from the blood by macrophages in the spleen and liver (1). Changes observed in these cells involve various membranal modifications such as desialyzation (2–4), surface galactosyl exposure (5–7), degradation or configurai aggregation of band 3 (8-10) and changes in membrane phospholipid asymmetry (11,12). These modifications have been reported to be recognized by macrophages either directly (4–7,11,12), or indirectly, by binding of autoantibodies and complement components to the cells (2,8–10,13). Similar recognition mechanisms have been reported in some damaged RBCs such as in thalassemia and sickle cell anemia (10,11,14,15).


Autologous Serum Additive Inhibitory Effect Membrane Phospholipid Asymmetry Autologous Antibody G6PD Deficient Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. I. Berlin, P. O. Berk, The biological life of the red cell., in: The Red Blood Cell, Surgenor, Mac N. eds. 2nd ed., vol. 2, New York, p. 957 (1975).Google Scholar
  2. 2.
    E. M. Alderman, H. H. Fudenberg, R. E. Lovins, Isolation and characterization of an age-related antigen present on senescent human red blood cells, Blood 58:34 (1981).Google Scholar
  3. 3.
    S. Kelm, A. K. Shukla, J. C. Paulson, R. Schauer, Reconstitution of the masking effect of sialic acid groups on sialidase treated erythrocytes by the action of sialyltransferases, Carb. Res. 149:59 (1986).CrossRefGoogle Scholar
  4. 4.
    D. Aminoff, The role of sialoglycoconiugates in the aging and sequestration of red cells from circulation, Blood Cells 14:229 (1988).PubMedGoogle Scholar
  5. 5.
    J. Schleppe-Schafer, V. Kolb-Bachofen, H. Kolb, Identification of a receptor for senescent erythrocytes on liver macrophages, Biochem. Biophys. Res. Comm. 115:551 (1983).CrossRefGoogle Scholar
  6. 6.
    J. Schlepper-Schafer, V. Kolb-Bachofen, Red cell aging results in a change of cell surface carbohydrate epitopes allowing for recognition by galactose specific receptors of rat liver macrophages, Blood Cells 14:170 (1988).Google Scholar
  7. 7.
    N. Vaysse, L. Gattegno, D. Bladier, D. Aminoff, Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by galactosyl RBC derivates, Proc. Natl. Acad. Sci. USA 83:1339 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    M. M. B. Kay, Aging of cell membrane molecules leads to appearance of an aging antigen and removal of senescent cells, Gerontology, 31:215 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    H. U. Lutz, S. Fasler, P. Stammler, F. Bussolino, P. Arese, Naturally occurring antiband 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells, Blood Cells 14:175 (1984).Google Scholar
  10. 10.
    S. M. Waugh, B. M. Williardson, R. Kannan, R. J. Labtka, P. S. Low, Heinz bodies induce clustering of Band 3, glycophorin and ankirin in sickle cell erythrocytes, J. Clin. Invest, 78:1155 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    A. J. Schroit, Y. Tanaka, J. Madsen, I. J. Fidler, The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymetry, Biol. Cell 51:227 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    L. McEvoy, P. Williamson, R. A. Schlegel, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. Usa 83:3311 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    U. Galili, I. Flechner, A. Knyszynsky, D. Danon, E. A. Rachmilewitz, The natural antigalactosyl IgG on human normal senescent red blood cells, Br. J. Haem. 62:317 (1986).CrossRefGoogle Scholar
  14. 14.
    A. Knyszynski, D. Danon, I. Kahane, E. A. Rachmilewitz, Phagocytosis of nucleated and mature B thalassemic red blood cells by mouse macrophages “in vitro”, Br. J. Haem. 43:251 (1979).CrossRefGoogle Scholar
  15. 15.
    U. Galli, A. Korkesh, I. Kahane, E. A. Rahmilewitz, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 61:1258 (1983).Google Scholar
  16. 16.
    N. Bashan, R. Pothashnik, R. Feozer, S. W. Moses. The effect of oxidative agents on normal and G6PD deficient red blood cell membranes, in: Advances in Red Cell Biology, D. J. Weatheral, G. Fiorelly, S. Gorini eds., New York, p. 365 (1982).Google Scholar
  17. 17.
    L. M. Snyder, N. L. Fortier, J. Trainor, J. Jacobs, L. Leb, B. Lubin, D. Chim. S. Shohet, N. Mohandas, Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics and spectrin-hemoglobin crosslinking, J. Clin. Invest. 76:1971 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    S. K. Jain, P. Hochstein, Generation of superoxide radicals by hydrazine. Its role in Phenylhydrazine induced hemolytic anemia, Biochim. Bipohys. Acta 586:128 (1979).CrossRefGoogle Scholar
  19. 19.
    C. C. Winterboum, Free radical production and oxidative reactions of hemoglobin, Envir. Health Persp. 64:321 (1985).CrossRefGoogle Scholar
  20. 20.
    B. Vilsen, H. Nielsen, Reaction of Phenylhydrazine with erythrocytes, Clin. Pharm. 33:2739 (1984).Google Scholar
  21. 21.
    A. Arduini, A. Stern, Spectrin degradation in intact red blood cells by Phenylhydrazine, Biochem. Pharmacol. 34:4238 (1985).CrossRefGoogle Scholar
  22. 22.
    P. S. Low, S. M. Waugh, K. Zinke, D. Dreckhahn, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227:531 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    O. Shalev, M. N. Leida R. P. Hebbel, H. S. Jacob, J. W. Eaton, Abnormal erythrocyte calcium hemostasis in oxidant-induced hemolytic disease. Blood 58:1232 (1981).PubMedGoogle Scholar
  24. 24.
    M. Beppu, H. Ochiai, K. Kikugawa, Macrophage recognition of the erythrocytes modified by oxidizing agents, Biochim. Biophys Acta 930:244 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Magnani, V. Stocchi, L. Cucchiarini, L. Chiarantini, G. Fornaini, Red blood cell phagocytosis and lysis following oxidative damage by Phenylhydrazine, Cell. Biochem. and Function 4:263 (1986).CrossRefGoogle Scholar
  26. 26.
    G. S. Platt., J. F. Falcone, Membrane protein lesion in erythrocytes with Heinz bodies, J. Clin. Invest. 82:1051 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    T. P. Flynn, G. J. Jahnson, D. W. Allen, Mechanism of decreased erythrocyte deformability and survival in glucose 6 phosphate dehydrogenase mutants, in: Recent Clinical and Experimental Advances, Alan R. Liss A. Eds., New York, Raven p. 231 (1981).Google Scholar
  28. 28.
    A. Yoshida, Hemolitic anemia and G6PD deficiency, Science 179:532 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    S. L. Schrier, Human erythrocyte G6PD deficiency: pathophysiology, prelevance, diagnosis and management, Blood Dis. 41 (1980).Google Scholar
  30. 30.
    G. J. Johnson, D. W. Allen, S. Cadman, V. F. Fairbanks, J. G. White, B. C. Lampkin, M. E. Kaplan, Red-cell-membrane aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease, New Engl. J. Med. 301:522 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    T. P. Flynn, G. J. Johson, D. W. Allen, Mechanism of decreased deformability and survival in glucose-6-phosphate dehydrogenase mutants, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances, Alan R Liss, New York (1981).Google Scholar
  32. 32.
    E. Alhanaty, M. Snyder, M. B. Sheetz, Glucose-6-phosphate dehydrogenase have an impaired shape recovery system, Blood 63(5):1198 (1984).PubMedGoogle Scholar
  33. 33.
    M. A. Klausner, L. J. Hirsch, P. F. Leblond, J. K. Chamberlain, M. R. Klemperer, G. B. Segel, Contrasting splenic mechanism in the blood clearance of red blood cells and colloidal particles, Blood 46(6):965 (1975).PubMedGoogle Scholar
  34. 34.
    S. Kyoizumi, T. Masuda, A lectin-like receptor on murine macrophage cell line cells Mm1: involvement of sialic acid-binding sites in opsonin-independent phagocytosis for xenogenic red cells, J. Leu. Biol. 37:289 (1985).Google Scholar
  35. 35.
    S. Horn, J. Gopas, N. Bashan, A lectin-like receptor on murine macrophage is involved in the recognition and phagocytosis of human red cells oxidized by Phenylhydrazine, Biochem. Pharmacol. 39(4):775 (1990).PubMedCrossRefGoogle Scholar
  36. 36.
    E. Beuler, C. West, K. G. Blume, The removal of leukocytes and platelets from whole blood, J. Lab. Clin. Med. 88:328 (1976).Google Scholar
  37. 37.
    P. Yam, L. D. Petz, P. Spath, Detection of IgG sensitization of red cells with 125I-Staphylococcal protein, Am. J. Hematol. 12:337 (1983).CrossRefGoogle Scholar
  38. 38.
    A. Knyszynsky, J. S. Leibovich, Interaction of macrophages with “old” red blood cells from syngeneic mice in vitro and independence of the recognition process on macrophage Fc receptors, Mech. Aging Dev. 29:171 (1985).CrossRefGoogle Scholar
  39. 39.
    G. Kaplan, T. Eskeland, R. Seljelid, Difference in the effect of immobilized ligands on the Fc and C3 receptors of mouse peritoneal macrophages in vitro, Scand. J. Immunol. 7:19 (1978).PubMedCrossRefGoogle Scholar
  40. 40.
    E. L. Kean, N. Sharon, Inhibition of yeast binding to mouse peritoneal macrophages by wheat germ agglutinin: a novel effect of the lectin on phagocytic cells BBRC 148(3):1202 (1987).PubMedGoogle Scholar
  41. 41.
    A. Perry, Y. Keisari, I. Ofek, Liver and macrophage surface lectins as determinants in blood clearance and cellular attachment of bacteria, FEMS Microbiol. Lett. 27:345 (1985).CrossRefGoogle Scholar
  42. 42.
    N. Sharon, Surface carbohydrates and surface lectins are recognition determinants in phagocytosis, Immunol. Today 5:143 (1984).CrossRefGoogle Scholar
  43. 43.
    C. E. Smalley, E. M. Tucker, Blood group A antigen site distribution and immunoglobulin binding in relation to cell age, Br. J. Haematol. 54:209 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    G. J. Bosman, M. M. B. Kay, Erythrocyte aging: a comparison of model systems for stimulating cellular aging in vitro, Blood Cells. 14(1):19 (1988).PubMedGoogle Scholar
  45. 45.
    S. Horn, N. Bashan, J. Gopas, Phagocytosis of phenyhydrazine oxidized erythrocytes: the role of cell-bound immunoglobulins, submitted.Google Scholar
  46. 46.
    F. Bussolino, F. Turrini, P. Arese, Measurements of phagocytosis utilizing [14C] cyanate-labelled human red cells and monocytes, Br. J. Haem. 66:271 (1986).CrossRefGoogle Scholar
  47. 47.
    A. Brovelli, C. Seppi, A. Bardoni, C. Balduini, H. U. Lutz, Re-evaluation of the structural integrity of red-cell glycoproteins during aging in vivo and nutrient deprivation, Biochem-. J. 242:115 (1987).PubMedGoogle Scholar
  48. 48.
    D. Cola, P. Sacchetta, P. Battista, Proteolysis in human erythrocytes is triggered only by selected oxidative stressing agents, Ital. J. Biochem. 37(3):129 (1988).PubMedGoogle Scholar
  49. 49.
    M. A. Runge-Morris, S. Jacob, R. F. Novak, Characterization of hydrazine-stimulated proteolysis in human erythrocytes Toxicol. Appl. Pharmacol. 94:414 (1988).PubMedCrossRefGoogle Scholar
  50. 50.
    M. M. B. Kay, G. J. C. G. M. Bosman, G. J. Johnson, A. H. Beth, band-3-polymers and aggregates, and hemoglobin precipitates in red cell aging, Blood Cells. 14(1):275 (1988).PubMedGoogle Scholar
  51. 51.
    R. Kannan, R. Laboyka, P. S. Low, Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major sites of autologous antibody binding, J. Biol. Chem. 263(27):13766 (1988).PubMedGoogle Scholar
  52. 52.
    H. U. Lutz, F. Bussolino, R. Flepp, S. Fasler, P. Stammler, M. D. Kazatchkine, P. Arese, Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed erythrocytes, Proc. Natl. Acad. Sci. USA 84:7368 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Sara Horn
    • 1
  • Nava Bashan
    • 1
  • Shimon Moses
    • 1
  • Jacob Gopas
    • 1
  1. 1.Dept. of Biochemistry, Microbiology and Immunology Faculty of Health ScienceBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations