Advertisement

The Isoenzymes of Mammalian Hexokinase: Tissue Specificity and In Vivo Decline

  • Koko Murakami
  • Sergio Piomelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)

Abstract

The reticulocyte loses most of its intracellular organelles during maturation into the red blood cell (RBC). The RBC remains dependent on the preformed enzymatic machinery throughout its 120 day life-span, as it is incapable of protein synthesis. This provides an excellent model of molecular aging.

Keywords

MonoQ Column Nonspherocytic Hemolytic Anemia Reticulocyte Maturation Hexokinase Isoenzyme High Molecular Weight Protease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Seaman, S. Wyss and S. Piomelli, The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death, Am. J. Hematol. 8:31 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    R. G. Chapman, M. A. Hennessey, A. M. Watersdorph, F. M. Huennekens and B. W. Gabrio, Erythrocyte metabolism: level of glycolytic enzymes and regulatin of glycolysis, J. Clin. Invest. 41:1249 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    F. Brok, B. Ramot, E. Zwag and D. Danon, Enzyme activities in human blood cells of different age groups, Israel J. Med. 2:291 (1966).Google Scholar
  4. 4.
    S. Piomelli and S.R. Wyss, Metabolic death of the red blood cell, Blood 38:833a (1971).Google Scholar
  5. 5.
    T. A. Rapoport, R. Heinrich, G. Jacobash and S. Rapoport, A linear steady-state treatment of enymatic chains: a mathematical model of glycolysis of human erythrocyte, Eur. J. Biochem. 42:107 (1974).PubMedCrossRefGoogle Scholar
  6. 6.
    E. W. Jr Holmes, J. I. Malone, A. I. Winegrad and F. A. Oski, Hexokinase isoenzymes in human erythrocytes: association of type II with fetal hemoglobin, Science 156:646 (1967).PubMedCrossRefGoogle Scholar
  7. 7.
    J. C. Kaplan and E. Beutler, Hexokinase isoenzymes in human erythrocytes, Science 159:215 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    V. Stocchi, A. Stulzini and M. Magnani, Chromatographic fractionation of multiple forms of red blood cell hexokinases, J. Chromatogr. 237:330 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Magnani, G. Serafini and V. Stocchi, Hexokinase type I multiplicity in human erythrocytes, Biochem. J. 254:617 (1988).PubMedGoogle Scholar
  10. 10.
    G. Rijksen, G. Vansen, R. J. Kraaijenhagen, M. J. M. van der Vlist, A. M. C. Vlug and G. E. J. Staal, Separation and characterization of hexokinase I subtypes from human erythrocytes, Biochim. Biophys. Acta 659:292 (1981).PubMedGoogle Scholar
  11. 11.
    M. Gahr, Different biochemical properties of foetal and adult red cell hexokinase isoenzymes, Hoppe-Seyler’s Z. Physiol. Chem. 361:829 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    L. M. Corash, S. Piomelli, M. C. Chen, C. Seaman and E. Gross, Separation of erythrocytes according to age on a simplified density gradient, J. Lab. Clin. Med. 84:147 (1974.)PubMedGoogle Scholar
  13. 13.
    S. Piomelli, L. M. Corash, D. D. Davenport, J. Miraglia and E. L. Amorosi, In vivo lability of glucose-6-phosphate dehydrogenase in Gd and Gd Mediterranean deficiency, J. Clin. Invest. 47: 940, 1968.PubMedCrossRefGoogle Scholar
  14. 14.
    I. A. Rose, J. V. B. Warms: Mitochondrial hexokinase. Release, rebinding, and location. J. Biol. Chem. 242:1635, 1967.PubMedGoogle Scholar
  15. 15.
    G. Rijksen, J. W. N. Akkerman, A. W. L. van den Wall Bake, D. Pott Hofstede, G. E. J. Staal: Generalized hexokinase deficiency in the blood cells of a patient with nonspherocytic hemolytic anemia. Blood 61:12, 1983.PubMedGoogle Scholar
  16. 16.
    M. Magnani, V. Stocchi, L. Cucchiarini, G. Novelli, S. Lodi, L. Isa and G. Fornaini, Hereditary nonspherocytic hemolytic anemia due to a new hexokinase variant with reduced stability, Blood 66:690 (1985).PubMedGoogle Scholar
  17. 17.
    M. Magnani, L. Chiarantini, V. Stocchi, M. Dachà and G. Fornaini, Glucose metabolism in fibroblasts from patients with erythrocyte hexokinase deficiency, J. Inher. Metab. Dis. 9:129 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Magnani, V. Stocchi, F. Canestrari, M. Dachà, P. Balestri, M. A. Farnetani, D. Giorgi, A. Fois and G. Fornaini, Human erythrocyte hexokinase deficiency: a new variant with abnormal kinetic properties, Brit. J. Haematol. 61:41 (1985).CrossRefGoogle Scholar
  19. 19.
    C. Altay, C. A. Alper and D. G. Nathan, Normal and variant isoenzymes of human blood cell hexokinase and the isoenzyme patterns in hemolytic anemia, Blood 36:219 (1970).PubMedGoogle Scholar
  20. 20.
    A. Hershko and A. Ciehanover, A heath stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81:1100 (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    A. L. Goldberg and A. C. John, Intracellular protein degradation in mammalian and bacterial cells, Ann. Rev. Biochem. 45, 747 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Speicer and J. D. Etlinger, Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes, J. Biol. Chem. 257, 14122 (1982).Google Scholar
  23. 23.
    O. Raviv, H. Heller and A. Hershko, Alterations in components of ubiquitin-protein ligase system, following maturation of reticulocyte to erythrocyte, Biochem. Biophys. Res. Commun. 145:658 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Magnani, V. Stocchi, L. Chiarantini, G. Serafini, M. Dachà and G. Fornaini, Rabbit red cell hexokinase. Decay mechanisms during reticulocyte maturation, J. Biol. Chem. 261:8327 (1986).PubMedGoogle Scholar
  25. 25.
    Z. Bercovich, Y. Rosenberg-Hasson, A. Ciehanover and C. Kahana, Degradation of ornithine decarboxylase in reticulocyte lysates is ATP-dependent and ubiquitin-independent, J. Biol. Chem. 264:15949 (1989).PubMedGoogle Scholar
  26. 26.
    R. Hough, G. Pratt and M. Rechsteiner, Purification of two high molecular weight proteases from rabbit reticulocytes lysate, J. Biol. Chem. 261:2400 (1986).PubMedGoogle Scholar
  27. 27.
    M. Magnani, V. Stocchi, M. Dachà and G. Fornaini, Rabbit red cell hexokinase. Intracellular distribution during reticulocyte maturation, Mol. Cell. Biochem. 61:83 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Koko Murakami
    • 1
  • Sergio Piomelli
    • 1
  1. 1.Division of Pediatric Hematology/OncologyColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations