Skip to main content

Ubiquitin-Mediated Processes in Erythroid Cell Maturation

  • Chapter
Red Blood Cell Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 307))

Abstract

The terminal differentiation of erythroblasts during erythrocyte maturation entails significant cellular remodeling. In avian cells this is accomplished in part by marked attenuation of nuclear transcription and in mammalian cells by the physical extrusion of the nucleus. Thus lacking the ability to replace all but those proteins required for maintenance of the mature erythrocyte, the normal complement of cellular constituents is subsequently modified by a highly active degradative mechanism(s) to yield a sub-population of proteins stable to such proteolysis. During this time many metabolic pathways are shunted by selective turnover of key enzymes. The enhanced degradation essential to erythroid cell maturation is assumed to involve the same ATP, ubiquitin-dependent multi-enzyme pathway responsible for cytosolic protein turnover within all eukaryotes. The mechanism(s) required to commit erythroblasts to enhanced degradation and to direct the resulting selective degradation of key enzymes provides a tractable model for the less acute regulation observed within nucleated cells. Characterization of the ATP, ubiquitin-dependent pathway in erythroid cells and recent observations in other cells and tissues subject to enhanced degradation in response to various experimental manipulations provides some understanding of the dynamics exhibited by this system during terminal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Hershko, Ubiquitin-mediated protein degradation, J. Biol. Chem., 263:15237 (1988).

    PubMed  CAS  Google Scholar 

  2. B. P. Monia, D. J. Ecker and S. T. Crooke, New prospective on the structure and function of ubiquitin, Biotechnol. 8:209 (1990).

    Article  CAS  Google Scholar 

  3. A. Ciechanover, H. Heller, S. Elias, A. L. Haas and A. Hershko, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. U.S.A. 77:1365 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. A. Hershko, A. Ciechanover, H. Heller, A. L. Haas and I. A. Rose, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. U.S.A. 77:1783 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. A. L. Haas, Immunochemical probes of ubiqutin pool dynamics, in: “Ubiquitin,” M. Rechsteiner, ed., Plenum Press, New York (1988).

    Google Scholar 

  6. C. M. Pickart, Ubiquitin activation and ligation, in: “Ubiquitin,” M. Rechsteiner, ed., Plenum Press, New York (1988).

    Google Scholar 

  7. A. L. Haas, K. E. Murphy and P. M. Bright, The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts, J. Biol. Chem. 260:4694 (1985).

    PubMed  CAS  Google Scholar 

  8. J. M. Fagan, L. Waxman and A. L. Goldberg, Skeletal muscle and liver contain a soluble ATP-ubiquitin-dependent proteolytic pathway, Biochem. J. 243:335 (1987).

    PubMed  CAS  Google Scholar 

  9. A. L. Haas and P. M. Bright, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260:12464 (1985).

    PubMed  CAS  Google Scholar 

  10. A. L. Haas, Role of ubiquitin in protein degradation, in: “Protein Metabolism in Aging,” H. L. Segal, M. Rothstein, and E. Bergamini, eds., Wiley-Liss, New York (1990).

    Google Scholar 

  11. A. L. Haas and P. M. Bright, The dynamics of ubiquitin pools within cultured human lung fibroblasts, J. Biol. Chem. 262:345 (1987).

    PubMed  CAS  Google Scholar 

  12. A. L. Haas and I. A. Rose, The mechanism of ubiquitin activating enzyme, J. Biol. Chem. 257:10329 (1982).

    PubMed  CAS  Google Scholar 

  13. V. Chau, J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda and A. Varshavsky, A multiubiquitin chain is confined to a specific lysine in a targeted short-lived protein, Science 243:1576 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. A. L. Haas and I. A. Rose, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. U.S.A. 78:6845 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. A. L. Haas, P. M. Bright and V. Chau, Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products, J. Biol. Chem., in press (1990).

    Google Scholar 

  16. A. Hershko, H. Heller, E. Eytan and Y. Reiss, The protein substrate binding site of the ubiquitin-protein ligase system, J. Biol. Chem. 261:11992 (1986).

    PubMed  CAS  Google Scholar 

  17. R. L. Dunten and R. E. Cohen, Recognition of modified forms of ribonuclease A by the ubiquitin system, J. Biol. Chem. 264:16739 (1989).

    PubMed  CAS  Google Scholar 

  18. A. Bachmair and A. Varshavsky, The degradation signal in a short-lived protein, Cell 56:1019 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. A. Haas, R. M. Reback, G. Pratt and M. Rechsteiner, Ubiquitin-mediated degradation of histone H3 does not require the substrate binding protein E3 or attachment of polyubiquitin chains, J. Biol. Chem., in press (1990).

    Google Scholar 

  20. U. Bond, N. Agell, A. L. Haas, K. Redman and M. Schlesinger, Ubiquitin in stressed chicken embryo fibroblasts, J. Biol. Chem. 263:2384 (1988).

    PubMed  CAS  Google Scholar 

  21. A. L. Haas, The dynamics of ubiquitin pools within skeletal muscle, in: “The Ubiquitin System,” M. Schlesinger and A. Hershko, eds., Cold Spring Harbor Laboratory, New York (1988).

    Google Scholar 

  22. U. Bond and M. Schlesinger, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5:949 (1985).

    PubMed  CAS  Google Scholar 

  23. L. M. Schwartz and J. W. Truman, Hormonal control of rates of metamorphic development in the tobacco hornworm Manduca sexta, Devel. Biol. 99:103 (1983).

    Article  CAS  Google Scholar 

  24. A. Hershko, E. Eytan, A. Ciechanover and A. L. Haas, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257:13964 (1982).

    PubMed  CAS  Google Scholar 

  25. N. T. Neff, L. Bourret, P. Miao and J. F. Dice, Degradation of proteins microinjected into IMR-90 human diploid fibroblasts, J. Cell. Biol. 91:184 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. G. Pratt, R. Hough and M. Rechsteiner, Proteolysis in heat-stressed HeLa cells. Stabilization of ubiquitin correlates with the loss of proline endopeptidase, J. Biol. Chem. 246:12526 (1989).

    Google Scholar 

  27. L. Laszlo, F. J. Doherty, N. U. Osborn and R. J. Mayer, Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts, FEBS Lett. 261:365 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. S. Rapoport, W. Dubiel and M. Muller, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180:249 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. A. L. Goldberg and F. S. Boches, Oxidized proteins in erythrocytes are rapidly degraded by the adenosine triphosphate-dependent proteolytic system, Science 215:1107 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. D. T. Chin, L. Kuehl and M. Rechsteiner, Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 79:5857 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. L. Gregori, D. Marriott, C. M. West and V. Chau, Specific recognition of calmodulin from Dictylostelium discoideum by the ATP, ubiquitin-dependent degradative pathway, J. Biol. Chem. 260:5232 (1985).

    PubMed  CAS  Google Scholar 

  32. L. Gregori, D. Marriott, J. A. Putkey, A. R. Means and V. Chau, Bacterially synthesized vertebrate calmodulin is a specific substrate for ubiquitination, J. Biol. Chem. 262:2562 (1987).

    PubMed  CAS  Google Scholar 

  33. J. R. Schaeffer, ATP-dependent proteolysis of hemoglobin a chains in ß-thalassemic hemolysates is ubiquitin-dependent, J. Biol. Chem. 263:13663 (1988).

    Google Scholar 

  34. D. A. Riley, J. L. W. Bain, S. Ellis and A. L. Haas, Quantitation and immunohistochemical localization of ubiquitin conjugates within rat red and white skeletal muscles, J. Histochem. Cytochem. 36:621 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. C. M. Pickart and A. T. Vella, Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263:12028 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Haas, A.L. (1991). Ubiquitin-Mediated Processes in Erythroid Cell Maturation. In: Magnani, M., De Flora, A. (eds) Red Blood Cell Aging. Advances in Experimental Medicine and Biology, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5985-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5985-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5987-6

  • Online ISBN: 978-1-4684-5985-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics