Ubiquitin-Mediated Processes in Erythroid Cell Maturation

  • Arthur L. Haas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


The terminal differentiation of erythroblasts during erythrocyte maturation entails significant cellular remodeling. In avian cells this is accomplished in part by marked attenuation of nuclear transcription and in mammalian cells by the physical extrusion of the nucleus. Thus lacking the ability to replace all but those proteins required for maintenance of the mature erythrocyte, the normal complement of cellular constituents is subsequently modified by a highly active degradative mechanism(s) to yield a sub-population of proteins stable to such proteolysis. During this time many metabolic pathways are shunted by selective turnover of key enzymes. The enhanced degradation essential to erythroid cell maturation is assumed to involve the same ATP, ubiquitin-dependent multi-enzyme pathway responsible for cytosolic protein turnover within all eukaryotes. The mechanism(s) required to commit erythroblasts to enhanced degradation and to direct the resulting selective degradation of key enzymes provides a tractable model for the less acute regulation observed within nucleated cells. Characterization of the ATP, ubiquitin-dependent pathway in erythroid cells and recent observations in other cells and tissues subject to enhanced degradation in response to various experimental manipulations provides some understanding of the dynamics exhibited by this system during terminal differentiation.


Erythroid Cell Chicken Embryo Fibroblast Mature Erythrocyte Ubiquitin Activate Enzyme Ubiquitin Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hershko, Ubiquitin-mediated protein degradation, J. Biol. Chem., 263:15237 (1988).PubMedGoogle Scholar
  2. 2.
    B. P. Monia, D. J. Ecker and S. T. Crooke, New prospective on the structure and function of ubiquitin, Biotechnol. 8:209 (1990).CrossRefGoogle Scholar
  3. 3.
    A. Ciechanover, H. Heller, S. Elias, A. L. Haas and A. Hershko, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. U.S.A. 77:1365 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    A. Hershko, A. Ciechanover, H. Heller, A. L. Haas and I. A. Rose, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. U.S.A. 77:1783 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    A. L. Haas, Immunochemical probes of ubiqutin pool dynamics, in: “Ubiquitin,” M. Rechsteiner, ed., Plenum Press, New York (1988).Google Scholar
  6. 6.
    C. M. Pickart, Ubiquitin activation and ligation, in: “Ubiquitin,” M. Rechsteiner, ed., Plenum Press, New York (1988).Google Scholar
  7. 7.
    A. L. Haas, K. E. Murphy and P. M. Bright, The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts, J. Biol. Chem. 260:4694 (1985).PubMedGoogle Scholar
  8. 8.
    J. M. Fagan, L. Waxman and A. L. Goldberg, Skeletal muscle and liver contain a soluble ATP-ubiquitin-dependent proteolytic pathway, Biochem. J. 243:335 (1987).PubMedGoogle Scholar
  9. 9.
    A. L. Haas and P. M. Bright, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260:12464 (1985).PubMedGoogle Scholar
  10. 10.
    A. L. Haas, Role of ubiquitin in protein degradation, in: “Protein Metabolism in Aging,” H. L. Segal, M. Rothstein, and E. Bergamini, eds., Wiley-Liss, New York (1990).Google Scholar
  11. 11.
    A. L. Haas and P. M. Bright, The dynamics of ubiquitin pools within cultured human lung fibroblasts, J. Biol. Chem. 262:345 (1987).PubMedGoogle Scholar
  12. 12.
    A. L. Haas and I. A. Rose, The mechanism of ubiquitin activating enzyme, J. Biol. Chem. 257:10329 (1982).PubMedGoogle Scholar
  13. 13.
    V. Chau, J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda and A. Varshavsky, A multiubiquitin chain is confined to a specific lysine in a targeted short-lived protein, Science 243:1576 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    A. L. Haas and I. A. Rose, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. U.S.A. 78:6845 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    A. L. Haas, P. M. Bright and V. Chau, Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products, J. Biol. Chem., in press (1990).Google Scholar
  16. 16.
    A. Hershko, H. Heller, E. Eytan and Y. Reiss, The protein substrate binding site of the ubiquitin-protein ligase system, J. Biol. Chem. 261:11992 (1986).PubMedGoogle Scholar
  17. 17.
    R. L. Dunten and R. E. Cohen, Recognition of modified forms of ribonuclease A by the ubiquitin system, J. Biol. Chem. 264:16739 (1989).PubMedGoogle Scholar
  18. 18.
    A. Bachmair and A. Varshavsky, The degradation signal in a short-lived protein, Cell 56:1019 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Haas, R. M. Reback, G. Pratt and M. Rechsteiner, Ubiquitin-mediated degradation of histone H3 does not require the substrate binding protein E3 or attachment of polyubiquitin chains, J. Biol. Chem., in press (1990).Google Scholar
  20. 20.
    U. Bond, N. Agell, A. L. Haas, K. Redman and M. Schlesinger, Ubiquitin in stressed chicken embryo fibroblasts, J. Biol. Chem. 263:2384 (1988).PubMedGoogle Scholar
  21. 21.
    A. L. Haas, The dynamics of ubiquitin pools within skeletal muscle, in: “The Ubiquitin System,” M. Schlesinger and A. Hershko, eds., Cold Spring Harbor Laboratory, New York (1988).Google Scholar
  22. 22.
    U. Bond and M. Schlesinger, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5:949 (1985).PubMedGoogle Scholar
  23. 23.
    L. M. Schwartz and J. W. Truman, Hormonal control of rates of metamorphic development in the tobacco hornworm Manduca sexta, Devel. Biol. 99:103 (1983).CrossRefGoogle Scholar
  24. 24.
    A. Hershko, E. Eytan, A. Ciechanover and A. L. Haas, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257:13964 (1982).PubMedGoogle Scholar
  25. 25.
    N. T. Neff, L. Bourret, P. Miao and J. F. Dice, Degradation of proteins microinjected into IMR-90 human diploid fibroblasts, J. Cell. Biol. 91:184 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Pratt, R. Hough and M. Rechsteiner, Proteolysis in heat-stressed HeLa cells. Stabilization of ubiquitin correlates with the loss of proline endopeptidase, J. Biol. Chem. 246:12526 (1989).Google Scholar
  27. 27.
    L. Laszlo, F. J. Doherty, N. U. Osborn and R. J. Mayer, Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts, FEBS Lett. 261:365 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Rapoport, W. Dubiel and M. Muller, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180:249 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    A. L. Goldberg and F. S. Boches, Oxidized proteins in erythrocytes are rapidly degraded by the adenosine triphosphate-dependent proteolytic system, Science 215:1107 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    D. T. Chin, L. Kuehl and M. Rechsteiner, Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 79:5857 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Gregori, D. Marriott, C. M. West and V. Chau, Specific recognition of calmodulin from Dictylostelium discoideum by the ATP, ubiquitin-dependent degradative pathway, J. Biol. Chem. 260:5232 (1985).PubMedGoogle Scholar
  32. 32.
    L. Gregori, D. Marriott, J. A. Putkey, A. R. Means and V. Chau, Bacterially synthesized vertebrate calmodulin is a specific substrate for ubiquitination, J. Biol. Chem. 262:2562 (1987).PubMedGoogle Scholar
  33. 33.
    J. R. Schaeffer, ATP-dependent proteolysis of hemoglobin a chains in ß-thalassemic hemolysates is ubiquitin-dependent, J. Biol. Chem. 263:13663 (1988).Google Scholar
  34. 34.
    D. A. Riley, J. L. W. Bain, S. Ellis and A. L. Haas, Quantitation and immunohistochemical localization of ubiquitin conjugates within rat red and white skeletal muscles, J. Histochem. Cytochem. 36:621 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    C. M. Pickart and A. T. Vella, Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263:12028 (1988).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Arthur L. Haas
    • 1
  1. 1.Department of BiochemistryThe Medical College of WisconsinMilwaukeeUSA

Personalised recommendations