Advertisement

Heterogeneity of Guanine Nucleotide Binding Proteins in Human Red Blood Cell Membranes

  • Antonio De Flora
  • Gianluca Damonte
  • Adina Sdraffa
  • Luisa Franco
  • Umberto Benatti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)

Summary

Membranes from human erythrocytes bind radioactive GTP and GTP analogs according to apparently homogeneous patterns. In spite of this uniform type of association, multiple guanine nucleotide binding proteins have been identified both by SDS-PAGE analysis of native and of variously ADP-ribosylated membrane preparations and by FPLC chromatography of solubilised erythrocyte membranes preliminarily incubated with [α-32P] GTP in the presence of 5 mM MgCl2. From eight to nine peak fractions of pronase-digestible GTP-binding activity were separated on a MA7Q anion exchange column, this pattern being highly reproducible with different membrane preparations. Prior incubation of membranes with[α-32P] GTP in the presence of excess unlabeled GDP resulted in displacement of bound labeled nucleotide from all FPLC fractions. The patterns of GTP binding were also markedly modified by preliminary treatment of membranes with N-ethylmaleimide. Detectable GTPase activity was present in each of the FPLC peak fractions. This wide heterogeneity of guanine nucleotide binding proteins raises so far unanswered questions as to their physiological significance in the mature erythrocyte.

Keywords

Erythrocyte Membrane Guanine Nucleotide Pertussis Toxin GTPase Activity Guanine Nucleotide Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Gilman, G proteins: transducers of receptor-generated signals, Ann. Rev. Biochem. 56:615 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Stryer, Cyclic GMP cascade of vision, Ann. rev. Neurosci. 9:87 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Birnbaumer, J. Abramowitz and A. M. Brown, Receptor-effector coupling by G proteins, Biochim. Biophys. Acta 1031:163 (1990).PubMedGoogle Scholar
  4. 4.
    M. Barbacid, ras genes, Ann. Rev. Biochem. 56:779 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    R. D. Burgoyne, Small GTP-binding proteins, Trends Biochem. Sci., 14:394 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Codina, J. D. Hildebrandt, R. D. Sekura, M. Birnbaumer, J. Bryan, C. R. Manclark, R. Iyengar and L. Birnbaumer, Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclase, J. Biol. Chem. 259:5871 (1984).PubMedGoogle Scholar
  7. 7.
    J. Codina, J. Hildebrandt, R. Iyengar, L. Birnbaumer, R. D. Sekura and C. R. Manclark, Pertussis toxin substrate, the putative N component of adenylyl cyclases, is an heterodimer regulated by guanine nucleotide and magnesium, Proc. Natl. Acad. Sci. U.S.A. 80:4276 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Yatani, J. Codina, A. M. Brown and L. Birnbaumer, Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein G, Science 235:207 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Codina, A. Yatani, D. Grenet, A. M. Brown and L. Birnbaumer, The subunit of the GTP binding protein Gk opens atrial potassium channels, Science 236:442 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Ikeda, A. Kikuchi and Y. Takai, Small molecular weight GTP-binding proteins in human erythrocyte ghosts, Biochem. Biophys. Res. Commun. 156:889 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Tanimoto, M. Hoshijima, M. Kawata, K. Yamamoto, T. Ohmori, H. Shiku, H. Nakano and Y. Takai, Binding of ras p21 to bands 4.2 and 6 of human erythrocyte membranes, FEBS Lett. 226:291 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    D. J. Carty and R. Iyengar, A 43 kDa form of the GTP-binding protein Gi3 in human erythrocytes, FEBS Lett. 262:101 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    P. Arese and A. De Flora, Pathophysiology of hemolysis in glucose 6-phosphate dehydrogenase deficiency, in: “Seminars Hematol.”, E. A. Rachmilewitz, ed., 27:1 (1990).Google Scholar
  14. 14.
    J. W. Eaton, T. D. Skelton, H. S. Swofford, C. E. Kolpin and H. S. Jacob, Elevated erythrocyte calcium in sickle cell disease, Nature 246:105, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    O. Shalev, S. Mogilner, E. Shinar, E. A. Rachmilewitz and S. L. Schrier, Impaired erythrocyte calcium homeostasis in ß-thalassemia, Blood 64:564 (1984).PubMedGoogle Scholar
  16. 16.
    A. De Flora, U. Benatti, L. Guida, G. Forteleoni and T. Meloni, Favism: disordered erythrocyte calcium homeostasis, Blood 66:294 (1985).PubMedGoogle Scholar
  17. 17.
    F. Turrini, A. Naitana, L. Mannuzzu, G. Pescarmona and P. Arese, Increased red cell calcium, decreased calcium adenosine triphosphatase, and altered membrane proteins during fava bean hemolysis in glucose-6-phosphate dehydrogenase-deficient (Mediterranean variant) individuals, Blood 66:302 (1985).PubMedGoogle Scholar
  18. 18.
    J. Heschler, W. Rosenthal, W. Trautwein and G. Schultz, The GTP-binding protein, G0, regulates neuronal calcium channels, Nature 325:445 (1987).CrossRefGoogle Scholar
  19. 19.
    D. L. Ghosh, J. M. Mullaney, F. I. Tarazi and D. L. Gill, GTP-activated communication between distinct inositol 1,4,5-triphosphate-sensitive and-insensitive calcium pools, Nature 340:236 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    D. L. Gill, J. M. Mullaney, T. K. Ghosh, and S. H. Chueh, Cell calcium metabolism. Physiology, biochemistry, pharmacology and clinical implications, G. Fiskum, ed., Plenum Press, New York, pp. 157–168(1989).Google Scholar
  21. 21.
    R. Fulceri, A. Romani, G. Bellomo and A. Benedetti, Liver cytosolic non-dialysable factor(s) can counteract GTP-dependent Ca2+ relase in rat liver microsomal fractions, Biochem. Biophys. Res. Commun. 163:823 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Kitazawa, S. Kobayashi, K. Horiuti, A. V. Somlyo and A. P. Somlyo, Receptor-coupled, permeabilized smooth muscle. Role of the phosphotidylinositol cascade, G. proteins and modulation of the contractile responde to Ca 2+, J. Biol. Chem. 264:5339 (1989).PubMedGoogle Scholar
  23. 23.
    I. Kojima, M. Kitaoka and E. Ogata, Guanine nucleotides modify calcium entry induced by insulin-like growth factor-I, FEBS Lett. 258:150 (1989).CrossRefGoogle Scholar
  24. 24.
    B. P. Hughes and G. J. Barritt, Evidence that guanosine 5′--thio triphosphate stimulates plasma membrane Ca2+ inflow when introduced into hepatocytes, Biochem. J. 257:591 (1989).PubMedGoogle Scholar
  25. 25.
    S. Muallem and T. G. Beeker, Relationship between hormonal, GTP and Ins(1,4,5)P3-stimulated Ca2+ uptake and release in pancreatic acinar cells, Biochem. J. 263:333 (1989).PubMedGoogle Scholar
  26. 26.
    R. B. Moore, G. A. Plishker and S. K. Shriver, Purification and measurement of calpromotin, the cytoplasmic protein which activates calcium-dependent potassium transport, Biochem. Biophys. Res. Commpun. 166:146 (1990).CrossRefGoogle Scholar
  27. 27.
    V. Niggli, E. S. Adunyah, J. T. Penniston and E. Carafoli, Purified (Ca-Mg )-ATPase of the erythrocyte membrane, J. Biol. Chem. 256:395 (1981).PubMedGoogle Scholar
  28. 28.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the folin phenol reagents, J. Biol. Chem. 193:265 (1951).PubMedGoogle Scholar
  29. 29.
    G. Damonte, A. Morelli, M. Piu, P. Longone and A. De Flora, “In situ” characterization of guanine nucleotide-binding properties of erythrocyte membranes, Biochem. Biophys. Res. Commun. 159:41 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    J. K. Northup, M. D. Smigel and A. G. Gilman, The guanine nucleotide activating site of the regulatory component of adenylate cyclase, J. Biol. Chem. 257:11416 (1982).PubMedGoogle Scholar
  31. 31.
    G. Damonte, A. Sdraffa, E. Zocchi, L. Guida, C. Polvani, M. Tonetti, U. Benatti, P. Boquet and A. De Flora, Multiple small molecular weight guanine nucleotide-binding proteins in human erythrocyte membranes, Biochem. Biophys. Res. Commun. 166:1398 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    H. Towbin, T. Staehelin and J. Gordon, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U.S.A. 76:4350 (1959).CrossRefGoogle Scholar
  33. 33.
    S. M. Hsu, L. Raine and H. Fanger, A Comparative Study of the Peroxidase-Antiperoxidase Method and an Avidin-Biotin Complex Method for Studying Polypeptide Hormones with Radioimmunoassay Antibodies, Am. J. Clin. Pathol. 75:734 (1981).PubMedGoogle Scholar
  34. 34.
    A. Wolfman, A. Moscucci and I. G. Macara, Evidence for multiple, ras-like, guanine nucleotide-binding proteins in Swiss 3T3 plasma membranes, J. Biol. Chem. 264:10820 (1989).PubMedGoogle Scholar
  35. 35.
    J. H. Morrissey, Silver stain for proteins in Polyacrylamide gels: a modified procedure with enhanced uniform sensitivity, Anal. Biochem. 117:307 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Trahey and F. McCormick, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants, Science 258:542 (3987).Google Scholar
  37. 37.
    C. J. Der, B. T. Pan and G. M. Cooper, ras mutants deficient in GTP binding, Molec. Cell. Biol. 6:3291 (1986).PubMedGoogle Scholar
  38. 38.
    P. Arese, L. Mannuzzu, F. Turrini, S. Galiano and G. F. Gaetani, Etiological aspects of favism, in: “Glucose 6-phosphate dehydrogenase”, A. Yoshida and E. Beutler, eds. Academic Press, San Diego, pp. 45–75 (1986).Google Scholar
  39. 39.
    S. Hattori, T. Yamashita, T. D. Copeland, S. Oroszlan and T. Y. Shih, Reactivity of a Sulphydryl Group of the ras Oncogene Product p21 Modulated by GTP Binding, J. Biol. Chem. 261:14582 (1986).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Antonio De Flora
    • 1
  • Gianluca Damonte
    • 1
  • Adina Sdraffa
    • 1
  • Luisa Franco
    • 1
  • Umberto Benatti
    • 1
  1. 1.Institute of BiochemistryUniversity of GenoaGenoaItaly

Personalised recommendations