Red Cell Metabolism, Normal and Abnormal Implications for Red Cell Aging

  • William N. Valentine
  • Donald E. Paglia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 307)


Aging of the human erythrocyte consists of changes in its structure and function beginning at birth and culminating in its demise. This is commonly regarded as a chronic process, progressing inexorably in small increments to senescence and ultimate death and its time frame for the normal red cell averages about 120 days. However, this transition can be greatly accelerated by intrinsic cellular defects or extrinsic environmental influences. Among many others, the latter include trauma to the red cell as in the microangiopathic hemolytic syndromes, autoimmune disorders where the erythrocyte may be an innocent victim, and the individually varying effects of infection, diet, medications and exposure to hazardous substances in the environment. Red cell life span also may be dramatically shortened by genetically determined birth defects whose impact in some instances can be substantially ameliorated by calculated interventions. Witness the nearnormal survival of the hereditary spherocyte after splenectomy, in contrast to that of the same cell circulating in a subject with an intact spleen. Witness the shortened red cell life span accompanying primaquine medication in some glucose-6-phosphate dehydrogenase (G-6-PD) deficient individuals.


Hereditary Spherocytosis Adenine Nucleotide Pool PRPP Synthetase Hereditary Hemolytic Anemia Congenital Hemolytic Anemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Atkinson, The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifiers, Biochemistry 7:4030 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    J. V. Dacie, The Haemolytic Anemias, 3rd edition, Vol. 1. The hereditary haemolytic anaemias, Churchill Livingstone, New York (1985).Google Scholar
  3. 3.
    R. I. Weed, Hereditary spherocytosis — A review, Arch Int Med 135:1316 (1969).CrossRefGoogle Scholar
  4. 4.
    W. N. Valentine, Hereditary spherocytosis revisited, West J Med. 128:35 (1978).PubMedGoogle Scholar
  5. 5.
    S. E Lux and P. S. Burke, Disorders of the red cell membrane skeloton: hereditary spherocytosis and hereditary elliptocytosis, in: “The Metabolic Basis of Inherited Disease”, CR Scriver, AL Beaudet, WS Sly, D Valle, eds., 6th edition, Chap 95, McGraw-Hill, New York (1989).Google Scholar
  6. 6.
    I. H. Fox and W. N. Kelley, The role of adenosine and deoxyadenosine in mammalian, cells, Annu Rev Biochem 47:655 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    T. D. Palella and I. H. Fox, Hyperuricemia and gout, in: The Metabolic Basis of Inherited Disease., eds C R Scriver, AL Beaudet, WS Sly, D Valle 6th edition, Vol. 1, Chap 37, Mc Graw-Hill, New York (1989).Google Scholar
  8. 8.
    H. G. Williams-Ashman, J. Seudenfekd and P. Galetti, Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine, Biochem Pharmacol 31:277 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Simmonds, A. S. Sahota and K. J. Van Acker, Phosphoribosyltransfe-rase deficiency and 2,8-dihydroxyadenine lithiasis, in: The Metabolic Basis of Inherited Disease, eds CR Scriver, AL Beaudet, MS Sly, D Valle, 6th edition, Vol. 1, Chap 39, Mc Graw Hill, New York (1989).Google Scholar
  10. 10.
    A. Sahota, D. R. Webster, C. F. Potter, H. A. Simmons, A.V. Rogers and T. Gobson, Methylthioadenosine Phosphorylase activity in human erythrocytes, Clin Chim Acta 128:283 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides. eds HP Baer, GI Drummond, Raven Press, New York (1977).Google Scholar
  12. 12.
    H. S. Mudd and J. R. Poole, Labile methyl balances for normal humans on various dietary regimes, Metabolism 24:721 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    R. E. Klabunde Dipyridamole inhibition of adenosine metabolism in human blood, Eur J Pharmacol 93:21 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Bontemps, G. Van den Berge and H. G. Hers, Pathways of adenine nucleotide metabolism in erythrocytes, J Clin Invest 77:824 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    J. F. Henderson, Regulation of adenosine, in: Physiological and Regulatory Function of Adenosine nucleotides, eds HP Baer, GI Drumond, Raven Press, New York (1979).Google Scholar
  16. 16.
    D. E. Paglia, W. N. Brockway and M. Nakatani, Substrate specificity and pH sensitivity of deoxyribonucleotidase and pyrimidine nucleotidase in human hemolysates, Exp Hematol 15:1041 (1987).PubMedGoogle Scholar
  17. 17.
    D. E. Paglia W. N. Valentine, M. Nakatani and R.A. Brockway. Mechanisms of adenosine 5′-monophosphate catabolism in human erythrocytes, Blood 67:988 (1986).PubMedGoogle Scholar
  18. 18.
    D. E. Paglia, W. N. Valentine, A. S. Keitt, R. A. Brockway and M. Nakatani, Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: evidence for existence of thymidine nucleotidase in human erythrocytes, Blood 62:1147 (1983).PubMedGoogle Scholar
  19. 19.
    D. E. Paglia W. N. Valentine, and R. A. Brockway, Identification of thymidine nucleotidase and deoxyribonucleotidase activities among normal isozymes of 5′-nucleotidase in human erythrocytes, Proc Natl Acad Sci USA 81:588 (1984).PubMedCrossRefGoogle Scholar
  20. 20.
    D. M. Swallow, I. Aziz, D. A. Hopkinson and S. Miwa, Analysis of human erythrocyte 5′nucleotides in healthy individuals and a patient deficient in pyrimidine 5′-nucleotidase, Ann Hum Genet 47:19 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    A S. Bagnara, and M. S. Hershfield, Mechanism of deoxyadenosine-induced catabolism of adenine ribonucleotides in adenosine deaminase-inhibited human T lymphoblastoid cells, Proc Natl Acad Sci USA 79:2673 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    H. M. Kredich, and M. S. Hershfield, Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside Phosphorylase deficiency, in: The Metabolic Basis of Inherited Disease, eds CR Scriver, AL Beaudet, WS Sly, D. Valle, 6th Edition Vol. 1, Chap 40, McGraw Hill, New York (1989).Google Scholar
  23. 23.
    T. Suzuki, and G. L. Dale, Senescent erythrocytes; isolation of in vivo aged cells and their biochemical characteristics, Proc Natl Acad Sci USA 85:1647 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    G. L. Dale and S. L. Norenberg, Time-dependent loss of adenosine 5′-monophosphate deaminase activity may explain elevated adenosine 5′-triphosphate levels in senescent erythrocytes, Blood 74:2157 (1989).PubMedGoogle Scholar
  25. 25.
    N. Ogasawara, H. Goto, Y. Yamada, I. Nishigaki, T. Itoh and I. Hasegava, Complete deficiency of AMP deaminase in human erythrocytes, Biochem Biophys Res Comm 122:1344 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    K. R. Tanaka and C. R. Zerez, Red cell enzymopathies of the glycolytc pathway, Semin Hem 27:165 (1990).Google Scholar
  27. 27.
    C. R. Zeren, N. A. Lachant and K.R. Tanaka, Decreased erythrocyte phosphoribosylpyrophosphate synthetase activity and impaired formation in thalassemia minor: A mechanism for decreased adenine nucleotide content, J Lab Clin Med 114:43 (1989).Google Scholar
  28. 28.
    B. M. Dean, D. Perrett, H. A. Simmonds, and K. J. Van Acker, Adenine and adenosine metabolism in intact erythrocytes deficient in adenosine monophosphate-pyrophosphate phosphoribosyltransferase; a study of two families, Clin Sci Mol Med 55:407 (1978).PubMedGoogle Scholar
  29. 29.
    I. H Fox, S. La Croix, G. Planet, and M. Moore, Partial deficiency of phosphoribosyltransferase in man, Medicine (Baltimore) 56:515 (1977).Google Scholar
  30. 30.
    Y. Wada, Y. Nishimura, M. Tanabu, Y. Yoskimura, K. Linuma. T. Linuma, T. Yoshida and T. Arakawa, Hypouricemic mentally retarded infant with a defect of 5-phosphoribosy1-1-pyrophosphate synthesis of erythrocytes, Tokoku J. Exp Med 113:149 (1974).CrossRefGoogle Scholar
  31. 31.
    G. R. Bartlett, In vitro age-related alterations in adenine nucleotide metabolism in human red cells, in: Progress in Clinical and Biological Research Vol. 195. Cellular and Molecular Aspects of Aging. The Red Cell as a Model, eds JW Eaton, DK Konzen, J. G. White, Alan R. Less, Inc., New York (1985).Google Scholar
  32. 32.
    A. Hershko, A. Razin, T. Shoshani and J. Mager, Turnover of purine nucleotides in rabbit erythrocytes. II Studies in vitro, Biochim Biophys Acta 149:59 (1967).PubMedGoogle Scholar
  33. 33.
    W. N. Valentine, D. E. Paglia, D. E. Tartaglia and F. Gilsanz Hereditary hemolytic anemia with increased red cell adenosine deaminase (45-70 fold) and decreased adenosine triphosphate, Sci 195:783 (1977).CrossRefGoogle Scholar
  34. 34.
    S. Miwa, H. Fujii, N. Matsumoto, T. Nakutsuji, S. Oda, H. Asano, S. Asano, and Y. Miura, A case of red-cell adenosine deaminase overproduction associated with hereditary hemolytic anemia found in Japan, Am J Hematol 5:107 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    J. L. Perigon, M. Hamet, H. A. Buc, P. Cartier and M. Derycke, Biochemical study of a case of hemolytic anemia with increased (85-fold) red cell adenosine deaminase, Clin Chim Acta 124:205 (1982).CrossRefGoogle Scholar
  36. 36.
    H. Kanno, K. Tani, H. Fujii, S. M. M. Iguchi-ariga, H. Ariga, T. Kozaki and S. Miwa. Adenosine deaminase (ADA) over production associated with congenital hemolytic anemia: Case report and molecular analysis Japan J Exp Med 58:1 (1988).Google Scholar
  37. 37.
    W. N. Valentine, D. E. Paglia, S. Clarke, B. H. Morimoto, M. Nakatani, and R. A. Brockway, Adenine ribo-and deoxyribonucleotide metabolism in human erythrocytes, B-and T-lymphocyte lines, and monocyte-macrophages, Proc Natl Acad Sci USA 82:6682 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    S. P. Masouredis, Preservation and clinical use of erythrocytes and whole blood, in: Hematology, 4th edition, eds W. J Williams, E. Beutler, A. J. Erslev, M. A. Lichtman, Chap 169, McGraw-Hill, New York (1990).Google Scholar
  39. 39.
    M. A. Lichtman and D. R. Miller, Erythrocyte glycolysis, 2-3 diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration, J. Lab Clin Med 76:267 (1970).PubMedGoogle Scholar
  40. 40.
    P. J. Crowter, and M. N. Cauchi, Red cell nucleotide levels in patients with thalassemia, iron deficiency and renal failure, Brit J Haematol. 53:113 (1983).CrossRefGoogle Scholar
  41. 41.
    M. R. Clark and S. B. Shohet, Red cell senescense. Clin Haematol 14:223 (1985).PubMedGoogle Scholar
  42. 42.
    M. Morrison, C. W. Jackson, T. J. Mueller, T. Huang, M. E. Doktor, W. S. Walker, J.A. Singer and H. H. Edwards, Does red cell density-correlate with red cell age?, Biomed Biochim Acta 42:107 (1983).Google Scholar
  43. 43.
    E. Beutler, How do red cell enzymes age?,: A new perspective. Br J Haematol 61:377 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    E. Beutler, Isolation of the aged, Blood Cells 14:1 (1988).PubMedGoogle Scholar
  45. 45.
    M. R. Clark, Selected ionic and metabolic characteristics of human red cell populations separated on stractan density gradients., in: Progress in Clinical and Biological Research Cellular and Molecular Aspects of Aging. The Red Cell as a Model Vol. 195 eds JW Eaton, DK Konzen, JG White, Alan R Liss, Inc, New York (1985).Google Scholar
  46. 46.
    T. Suzuki, and G. L. Dale, Biotinylated erythrocytes; in vivo surivival and in vitro recovery, Blood 70:791 (1987).PubMedGoogle Scholar
  47. 47.
    D. E. Paglia, W. N. Valentine, M. Nakatani, and R. A. Brockway, AMP deaminase as a cell-age marker in transient erythroblastopenia of childhood and its role in the adenylate economy of erythrocytes, Blood 74:2161 (1989).PubMedGoogle Scholar
  48. 48.
    G. L. Dale and E. Beutler, Personal communication (1989).Google Scholar
  49. 49.
    F. Brok, B. Ramot, E. Zwang and D. Danon, Enzyme activities in human red blood cells of different age groups, Isrl J Med Sci 2:291 (1966).Google Scholar
  50. 50.
    M. A. Lichtman, Does ATP decrease exponentially during red cell aging?, Nouv Rev Fr Hematol 15:625 (1975).PubMedGoogle Scholar
  51. 51.
    N. S. Cohen, J. E. Ekhelm, M. G. Luthr and D. L. Hanahan, Biochemical characteristcs of density separated human erythrocytes, Biochim Biophys Acta 419:229 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    G. Bartosz, E. Grzelinska and J. Wagner, Aging of the erythrocyte. XIV. ATP content does decrease, Experientia 38–575 (1976).Google Scholar
  53. 53.
    W. N. Valentine, F. A. Oski, D. E. Paglia, M. A. Baughan, A. S. Schneider and J. L. Naiman, Hereditary hemolytic anemia with hexokinase deficiency. Role of hexokinase in aging, N Engl J Med 276:1 (1967).PubMedCrossRefGoogle Scholar
  54. 54.
    G. Jansen, L. Kuenderman, G. Rijksen, B. P. Cato and E. J. Staal, Characteristics of hexokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase during adult and neonatal reticulocyte maturation, Am J Hematol 20:203 (1985).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Magnani, V. Stocchi, L. Chiarantini, G. Serafini, M. Dachà and G. Fornaini, Rabbit red blood cell hexokinase. Decay mechanism during reticulocyte maturation, J Biol Chem 261:8327 (1986).PubMedGoogle Scholar
  56. 56.
    E. Beutler, “The primary cause of hemolysis in enzymopathies of anearobic glycolysis.”, A commentary. Blood Cells 6:827 (1980).Google Scholar
  57. 57.
    W. N. Valentine and D. E. Paglia, The primary cause of hemolysis in enzymopathies of anaerobic glycolysis: A viewpoint, Blood Cells 6:819 (1980).PubMedGoogle Scholar
  58. 58.
    J. V. Dacie, P. L. Mollison, N. Richardson, J. G. Selwyn, and L. Shapiro, Atypical congenital haemolytic anemia, O J Med 22:79 (1953).Google Scholar
  59. 59.
    J. G. Selwyn, and J. V. Dacie, Autohemolysis and other changes resulting from the incubation in vitro of red cells from patients with congenital hemolytic anemia, Blood 9:414 (1954).PubMedGoogle Scholar
  60. 60.
    G. C. DeGruchy, J. N. Santamaria, I. C. Parsons, and H. Crawford, Nonspherocytic congenital hemolytic anemia, Blood 16:1371 (1960).Google Scholar
  61. 61.
    M. A. Robinson, P. B. Loder, and G. C. DeGruchy, Red-cell metabolism in nonspherocytic congenital haemolytic anemia, Br J Haematol 7:327 (1961).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • William N. Valentine
    • 1
  • Donald E. Paglia
    • 1
  1. 1.Departments of Medicine and Pathology and Laboratory MedicineUniversity of California Center for Health ScienceLos AngelesUSA

Personalised recommendations