Cardiac Effects of Anesthetics

  • Zeljko J. Bosnjak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)

Abstract

The following chapters add to our knowledge of the possible mechanisms underlying the actions of anesthetics on the myocardium. These studies were designed to examine the effects of anesthetics on ionic fluxes across the sarcolemma, rapid changes in intracellular calcium, calcium transport functions of the sarcoplasmic reticulum (SR), isometric contractile force, and calcium sensitivity of the contractile apparatus.

Keywords

Hydrolysis Depression Ischemia Norepinephrine Benzyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. F. Rusy and H. Komai, Anesthetic depression of myocardial contractility: A review of possible mechanisms, Anesthesiology 67:745–766 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    P. R. Housmans and I. Murat, Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret: I. Contractility, Anesthesiology 69:451–463 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Komai and B. F. Rusy, Negative inotropic effects of isoflurane and halothane in rabbit papillary muscles, Anesth Analg 66:29–33 (1987).PubMedCrossRefGoogle Scholar
  4. 4.
    Z. J. Bosnjak and J. P. Kampine, Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat, Am J Physiol 251:H374-H381 (1986).Google Scholar
  5. 5.
    C. Lynch III, S. Vogel, M. G. Pratila and N. Sperelakis, Enflurane depression of myocardial slow action potentials, J Pharmacol Exp Ther 222:405–409 (1982).Google Scholar
  6. 6.
    C. Lynch III, Differential depression of myocardial contractility by halothane and isoflurane in vitro, Anesthesiology 64:620–631 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    E. W. McCleskey, A.P. Fox, D. Feldman and R.W. Tsien, Different types of calcium channels, J Exp Biol 124:177–190 (1986).PubMedGoogle Scholar
  8. 8.
    B. Nilius, P. Hess, J. B. Lansman and R. W. Tsien, A novel type of cardiac channel in ventricular cells, Nature 316:443–446 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Ikemoto, A. Yatani, H. Arimura and J. Yoshitake, Reduction of the slow inward current of isolated rat ventricular cells by thiamylal and halothane, Acta Anaesthesiol Scand 29:583–586 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    Z. J. Bosnjak, F. D. Supan and N. J. Rusch, The effects of halothane, enflurane and isoflurane on calcium current in isolated canine ventricular cells, Anesthesiology 74:340–345 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    J. L. Seagard, Z. J. Bosnjak, F. A. Hopp, K. J. Kotrly, T. J. Ebert and J. P. Kampine, Cardiovascular effects of general anesthesia, in: “Effects of Anesthesia,” B. G. Covino, H. A. Fozzard, K. Rehder and G. Strichartz, eds., Baltimore, Williams & Wilkins (1985) pp 149–177.Google Scholar
  12. 12.
    Z. J. Bosnjak and J. P. Kampine, Effects of halothane, enflurane and isoflurane on the SA node, Anesthesiology 58:314–321 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    J. L. Atlee and Z. J. Bosnjak, Mechanisms for cardiac dysrhythmias during anesthesia, Anesthesiology 72:347–374 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Y. Su and W. G. L. Kerrick, Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers, Pflugers Arch 380:29–34 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Y. Su and W. G. L. Kerrick, Effects of enflurane on functionally skinned myocardial fibers from rabbits, Anesthesiology 52:385–389 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    J. R. Blinks, W. G. Wier, P. Hess and F. G. Prendergast, Measurements of Ca2+ concentration in living cells. Prog Biophys Mol Biol 40:1–114 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    W. G. Wier, Cytoplasmic [Ca2+] in mammalian ventricle: Dynamic control by cellular processes, Annu Rev Physiol 52:467–485 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Carafoli, Membrane transport of calcium: An overview, Methods Enzymol 157:3–11 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Inesi, Mechanism of calcium transport, Annu Rev Physiol 47:573–601 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Y. Su and W. G. L. Kerrick, Effects of halothane on Ca2+-activated tension development in mechanically disrupted rabbit myocardial fibers, Pflugers Arch 375:111–117, (1978).PubMedCrossRefGoogle Scholar
  21. 21.
    I. Murat, R. Ventura-Clapier and G. Vassort, Halothane, enflurane and isoflurane decrease calcium sensitivity and maximum force in detergent-treated rat cardiac fibers, Anesthesiology 69:892–899 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    D. T. Yue, E. Marban and W. G. Wier, Relationship between force and intracellular [Ca2+] in tetanized mammalian heart muscle, J Gen Physiol 87:223–242 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    E. J. Krane and J. Y. Su, Comparison of the effects of halothane on skinned myocardial libers from newborn and adult rabbit: I. Effects on contractile proteins, Anesthesiology 70:76–81 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    M. C. DeTraglia, H. Komai and B. F. Rusy, Differential effects of inhalation anesthetics on myocardial potentiated-state contractions in vitro, Anesthesiology 68:534–540 (1988).CrossRefGoogle Scholar
  25. 25.
    C. Lynch III, Differential depression of myocardial contractility by volatile anesthetics in vitro: Comparison with uncouplers of excitation-contraction coupling, J Cardiovasc Pharmacol 15:655–665 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Katsuoka, K. Kobayashi and S. T. Ohnishi, Volatile anesthetics decrease calcium content of isolated myocytes, Anesthesiology 70:954–960 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    D. M. Wheeler, R. T. Rice and E. G. Lakatta, The action of halothane on spontaneous contractile waves and stimulated contractions in isolated rat and dog heart cells, Anesthesiology 72:911–920 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    Z. J. Bosnjak, S. Hoka, L. A. Turner and J. P. Kampinc, Cardiac protection by halothane following ischemia and calcium paradox, in: “Cell Calcium Metabolism,” G. Fiskum, ed., Plenum Press, New York (1989) pp 593–601.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Zeljko J. Bosnjak
    • 1
  1. 1.Department of AnesthesiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations