Ca Release from Skeletal Muscle SR

Effects of Volatile Anesthetics
  • G. Salviati
  • S. Ceoldo
  • G. Fachechi-Cassano
  • R. Betto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


The effects of volatile anesthetics on the physiology of skeletal muscle have been extensively studied. However, conflicting results have been presented, probably due to different experimental models and different concentrations of the drugs used. Often these studies address volatile anesthetic effects at concentrations well above those required for clinical anesthesia.


Sarcoplasmic Reticulum Calcium Release Ryanodine Receptor Calcium Loading Relaxing Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Takagi, Abnormaltiy of sarcoplasmic rcticulum in malignant hyperpyrexia, Adv Neurol Res 20:107–113 (1976).Google Scholar
  2. 2.
    Y. Ogawa and N. Kurebayashi, The Ca-releasing action of halothane on fragmented sarcoplasmic reticulum, J Biochem 92:899–905 (1982).PubMedGoogle Scholar
  3. 3.
    T. Beeler and K. Gable, Effect of halothane on Ca2+-induced Ca2+ release from sarcoplasmic reticulum vesicles isolated from rat skeletal muscle, Biochim Biophys Acta 821:142–152 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Endo, S. Yagi, T. Ishizuka, K. Horiuti, Y. Koga, and K. Amaha, Changes in the Ca2+-induced Ca2+ release mechanism in the sarcoplasmic reticulum of the muscle from a patient with malignant hyperthermia, Biomed Res 4:83–92 (1983).Google Scholar
  5. 5.
    D. H. Kim, F. A. Sreter, S. T. Ohnishi, J. F. Ryan, J. Roberts, P. D. Allen, L. G. Meszaros, B. Antoniu, and N. Ikemoto, Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles, Biochim Biophys Acta 755:320–324 (1984).Google Scholar
  6. 6.
    J. R. Mickelson, J. A. Ross, B. K. Reed, and C. F. Louis, Enhanced Ca2+-induced Ca2+ release by isolated sarcoplasmic reticulum vesicles from malignant hyperthermia susceptible pig muscle, Biochim Biophys Acta 862: 318–328 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Carrier and M. Villaz, Effects of halothane on calcium release from sarcoplasmic reticulum of rabbit psoas and semitendinosus skinned muscle fibers, Biochem Pharmacol 39:145–149 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    J. J. A. Heffron and G. A. Gronert, Effect of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on calcium binding and release by sarcoplasmic reticulum, Biochem Soc Trans 7:44–47 (1979).PubMedGoogle Scholar
  9. 9.
    N. Kurebayashi and Y. Ogawa, Effect of halothane on the calcium activated ATPase reaction of fragmented sarcoplasmic reticulum in reference to the Ca releasing action, J Biochem 92:907–913 (1982).PubMedGoogle Scholar
  10. 10.
    E. M. Diamond and M. C. Berman, Effect of halothane on the stability of Ca2+ transport activity of isolated fragmented sarcoplasmic reticulum, Biochem Pharmacol 29:375–381 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    J. S. Smith, E. Rousseau and G. Meissner, Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle, Circ Res 64:352–359 (1989).PubMedGoogle Scholar
  12. 12.
    D. S. Wood, J. R. Zollman, J. P. Reuben, and P. W. Brandt, Human skeletal muscle: Properties of chemically skinned fibers, Science 187:1075–1076 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    M. M. Sorenson, J. P. Reuben, A. B. Eastwood, M. Orentlicher and G. M. Katz, Functional heterogeneity of the sarcoplasmic reticulum within sarcomeres of skinned muscle fibers, J Membrane Biol 53:1–17 (1980).CrossRefGoogle Scholar
  14. 14.
    G. Salviati, M. M. Sorenson and A. B. Eastwood, Calcium accumulation by the sarcoplasmic reticulum in two populations of chemically skinned human muscle fibers: Effects of calcium and cyclic AMP, J Gen Physiol 79:603–632 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Orentlicher, P. W. Brandt and J. P. Reuben, Regulation of tension in skinned muscle fibers: Effect of high concentrations of MgATP, Am J Physiol 233:C127–C1374 (1977).PubMedGoogle Scholar
  16. 16.
    G. B. Warren, P. A. Toon, N. J. M. Birdsall, A. G. Lee and J. C. Metcalfe, Reconstitutiion of a calcium pump using defined membrane components, Proc Nat Acad Sci (USA) 71:622–626 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Saito, S. Seiler, A. Chu and S. Fleischer, Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle, J Cell Biol 99:875–885 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Salviati and P. Volpe, Ca2+ release from sarcoplasmic reticulum of skinned fast-and slow-twitch muscle fibers, Am J Physiol 254:C459-C465 (1988).Google Scholar
  19. 19.
    U. K. Laemmli, Cleavage of structural proteins during assembly of head of bacteriophage T4, Nature 227:680–685, 1970).PubMedCrossRefGoogle Scholar
  20. 20.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the folin phenol reagent, J Biol Chem 193:265–275 (1951).PubMedGoogle Scholar
  21. 21.
    J. R. Smith, R. Coronado and G. Meissner, Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels, Nature 316:446–449 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Meissner, Evidence of a role for calmodulin in the regulation of calcium release from skeletal muscle sarcoplasmic reticulum, Biochemistry 25:244–251 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Fleischer, E. M. Ogumbunmi, M. C. Dixon and E. A. M. Fleer, Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum in fast skeletal muscle, Proc Natl Acad Sci (USA) 82:7256–7259 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    A. B. Eastwood, D. S. Wood, K. R. Bock and M. M. Sorenson, Chemically skinned mammalian skeletal muscle: I. Structure of skinned rabbit psoas, Tissue & Cell 11:553–566 (1979).CrossRefGoogle Scholar
  25. 25.
    B. R. Eisenberg and A. M. Kuda, Stereological analysis of mammalian skeletal muscle: II. White vastus muscle of adult guinea pig, J Ultrastructure Res 51:176–187 (1975).CrossRefGoogle Scholar
  26. 26.
    K. Otsu, H. F. Willard V. K. Khanna, F. Zorzato, N. M. Green and D. H. MacLennan, Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac sarcoplasmic reticulum, J Biol Chem 15:13472–13483 (1990).Google Scholar
  27. 27.
    Y. S. Babu, J. S. Sack, T. J. Greenhough, C. E. Bugg, A. R. Means and W. J. Cook, 3-dimensional structure of calmodulin, Nature 315:37–40 (1985).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Seiler, A. D. Wegener, D. H. Wang, D. R. Hathaway and L. R. Jones, High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosporylated, and are degraded by Ca2+-activated protease, J Biol Chem 259:8550–8557 (1984).PubMedGoogle Scholar
  29. 29.
    S. P. Collins, M. D. White and M. A. Demborough, Calmodulin antagonist drugs and porcine malignant hyperpyrexia, Clin Exp Pharmacol Physiol 15:473–477 (1988).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. Salviati
    • 1
  • S. Ceoldo
    • 1
  • G. Fachechi-Cassano
    • 1
  • R. Betto
    • 1
  1. 1.Istituto di Patologia generaleUniversita’ di Padova and NRC Unit for Muscle Biology and PhysiopathologyPadovaItaly

Personalised recommendations