Advertisement

Interactions of Volatile Anesthetics and Reactive Oxygen Intermediates on Vascular Smooth Muscle

  • William Freas
  • Rocio Llave
  • Jayne Hart
  • Diane Golightly
  • John Nagel
  • Sheila Muldoon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)

Abstract

Reactive oxygen intermediates (ROIs, also referred to as oxygen-derived free radicals or reactive oxygen metabolites) have been implicated in several physiological and pathological processes.1–3 In particular, they have been reported to be associated with several vascular abnormalities, including those that occur during hypertension,4 reperfusion injury,5 transplant rejection,3 inflammation, premature aging,6 radiation injury, diabetes7 and endotoxic shock.8 An increase in PaO2, especially after hypoxia, is a major stimulus for production of ROIs.9

Keywords

Volatile Anesthetic Reactive Oxygen Intermediate Vascular Ring Laser Illumination Oxygen Radical Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Feher, G. Csomos, A. Vercckei, “Free Radical Reactions in Medicine,” Springer-Verlag, Berlin (1985).Google Scholar
  2. 2.
    G. M. Rubanyi, Vascular effects of oxygen derived free radicals. Free Radical Biol Med 4:107–120 (1988).CrossRefGoogle Scholar
  3. 3.
    D. A. Parks, G. B. Bulkley, and D. N. Granger, Role of oxygen free radicals in shock, ischemia and organ preservation, Surgery 94:428–431 (1983).PubMedGoogle Scholar
  4. 4.
    E. P. Wei, H. A. Kontos, C. W. Christman, D. S. Dewitt and J. T. Povlishock, Superoxide generation and reversal of acetylcholine induced cerebral arteriolar dilation after acute hypertension, Circ Res 57:781–787 (1985).PubMedGoogle Scholar
  5. 5.
    R. J. Korthius, J. K. Smith and D. L. Carden, Hypoxie reperfusion attenuates postischemic microvascular injury, Am J Physiol 256:H315–H319 (1989).Google Scholar
  6. 6.
    W. A. Pryor, Oxy-radicals and related species: Their formation, lifetimes, and reactions, Ann Rev Physiol 48:657–667 (1986).CrossRefGoogle Scholar
  7. 7.
    P. K. Ganguly, K. S. Dhalla, I. R. Innes, R. E. Beamish, N.J. Dhalla, Altered norepincphrine turnover and metabolism in diabetic cardiomyopathy, Circ Res 59:684–693 (1986).PubMedGoogle Scholar
  8. 8.
    K. McKechnie, B. Furman, and J. Parratt, Modification by oxygen free radical scavengers of the metabolic and cardiovascular effects of endotoxin infusion in conscious rats, Circ Shock 19:429–439 (1986).PubMedGoogle Scholar
  9. 9.
    J. M. McCord, Oxygen-derived free radicals in postischemic tissue, N Engl J Med 312:159–163 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    B. A. Macleod, P. Augereau, and M. J. A. Walker, Effects of halothane anesthesia compared with fentanyl anesthesia and no anesthesia during coronary ligation in rats, Anesthesiology 58:44–52 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Dolman and D. V. Godin, Myocardial ischaemic/reperfusion injury in the anaesthetized rabbit: Comparative effects of halothane and isoflurane, Can Anaesth Soc J 33:443–452 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    D. C. Warltier, M. H. Al-Wathiqui, J. P. Kampine, W. T. Schmeling, Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane, Anesthesiology 69:552–565 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Hoka, Z. J. Bosnjak, J. P. Kampine, Halothane inhibits calcium accumulation following myocardial ischemia and calcium paradox in guinea pig hearts, Anesthesiology 67:197–202 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    W. Freas, J. L. Hart, D. Golighlly, H. McClure, and S. M. Muldoon, Contractile properties of isolated vascular smooth muscle after photoradiation, Am J Physiol 256:H655–H664 (1989).PubMedGoogle Scholar
  15. 15.
    S. M. Muldoon, P. M. Vanhoutte, R. R. Lorenz and R.A. Van Dyke, Venomotor changes caused by halothane acting on the sympathetic nerves, Anesthesiology 43:41–48 (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    W. Freas, J. L. Hart, D. Golightly, H. McClure, D. Rodgers, and S. M. Muldoon, Vascular interactions of calcium and reactive oxygen intermediates following photoradiation, J Cardiovasc Pharmacol 17:27–35 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    R. A. Van Dyke and C. L. Wood, Binding of radioactivity from 14C-labcled halothane in isolated perfused rat livers, Anesthesiology 38:328–332 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    V. L. Kubic and M. W. Anders, Mechanism of the microsomal reduction of carbon tetrachloride and halothane, Chem Biol Interact 34:201–207 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    J. L. Plummer, A. L. J. Beckwith, F. N. Bastin, J. F. Adams, M. J. Cousins, P. Hall, Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane, Anesthesiology 57:160–166 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    T. L. Jang, B. A. Macleod and M. J. A. Walker, Effects of halogenated hydrocarbon anesthetics on responses to ligation of a coronary artery in chronically prepared rats, Anesthesiology 59:309–315 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    M. J. Rice, J. A. Hjelmhaug, J. H. Southard, The effect of halothane, isoflurane, and vcrapamil on ischemic-isolated rabbit renal tubules, Anesthesiology 71:738–743 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    P. J. Simpson, J. K. Mickelson and B. R. Lucchesi, Radical scavengers in myocardial ischemia, Fed Proc 46:2413–2421 (1987).PubMedGoogle Scholar
  23. 23.
    S. W. Werns, M. J. Shea, E. W. Driscoll, C. Cohen, G.D. Abrams, B. Pitt, B. R. Lucchesi, The independent effects of oxygen radical scavengers on canine infarct size: Reduction by Superoxide dismutase but not catalase, Circ Res 56:895–898 (1985).PubMedGoogle Scholar
  24. 24.
    M. L. Myers, R. Bolli, R. F. Lekich, C. J. Hartley, R. Roberts, Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia, Circulation 72:915–921 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • William Freas
    • 1
  • Rocio Llave
    • 1
  • Jayne Hart
    • 1
  • Diane Golightly
    • 1
  • John Nagel
    • 1
  • Sheila Muldoon
    • 1
  1. 1.Department of AnesthesiologyUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations