Advertisement

Effect of Volatile Anesthetic Agents on Endothelium-Dependent Relaxation

  • Gilbert A. Blaise
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)

Abstract

The vasodilatory mechanism of volatile anesthetic agents is complex and not yet fully understood. It is known that the endothelium controls smooth muscle tone as well as its response to most vasoactive substances. The endothelium not only metabolizes vasoactive agents, but it secretes several vasodilators (prostacyclin, EDRF, hyperpolarizing factor) and vasoconstrictors (endothelin, EDCF).1 In the last few years, an effect of volatile anesthetic agents on endothelium-dependent vasodilation has been suspected. Blaise et al. 2 have shown that isoflurane’s attenuation of the contractile response of isolated canine coronary artery rings to 5-hydroxytryptamine and prostaglandin F2α was dependent on the presence of the endothelium. As this attenuation was only slightly reduced by pretreatment of the vascular rings with indomethacin, it was postulated that isoflurane’s effect was mediated through EDRF release or action. Muldoon et al. 3 have shown that halothane reduces the response of precontracted rabbit and canine vascular rings to acetylcholine and bradykinin. They suggest that halothane inhibits the release or the action of EDRF. Our findings were similar and showed that, contrary to isoflurane, halothane attenuates the serotoninergic response of isolated canine coronary artery rings in denuded vessels (without endothelium), but not in intact vessels.4 These preliminary findings suggest a positive interaction of isoflurane and a negative interaction of halothane on endothelium-dependent dilation. Recently, Stone et al. 5 have demonstrated that volatile agents have a biphasic, dose-dependent effect on tension of isolated, preconstricted rat aorta. At lower doses, the tension increased; at higher doses, the isometric force decreased. The increase in tension induced by the volatile agents occured only in vessels with endothelium and was clearly potentiated by indomethacin. These data also suggest that these agents affect endothelium function and prostaglandin synthesis.

Keywords

Nitric Oxide Nitric Oxide Pertussis Toxin Vascular Ring Volatile Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Vane, E. E. Anggard, R. M. Botting, Mechanisms of disease: Regulatory functions of the vascular endothelium, N Eng J Med 323:27–36 (1990).CrossRefGoogle Scholar
  2. 2.
    G. Blaise, J. C. Sill, M. Nugent, R. A. Van Dyke, P. M. Vanhoutte, Isoflurane causes endothelium-dependent inhibition of contractile responses of canine coronary arteries, Anesthesiology 67:513–517 (1987).PubMedCrossRefGoogle Scholar
  3. 3.
    S. M. Muldoon, J. L. Hart, K. A. Bowen, W. Freas, Attenuation of endothelium-mediated vasodilation by halothane, Anesthesiology 68:31–37 (1987).CrossRefGoogle Scholar
  4. 4.
    G. Blaise, S. G. Lenis, D. Girard, C. Hollman, R. Meloche, Halothane and enflurane attenuate the K+ induced contractile response of isolated canine coronary artery rings, Can J Anesth 35:S72 (1988).Google Scholar
  5. 5.
    D. J. Stone and R. A. Johns, Endothelium-dependent effects of halothane, enflurane and isoflurane on isolated rat aortic rings, Anesthesiology 71:126–130 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    R. F. Furchgold and J. V. Zawadski, The obligatory role of endothclial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376 (1980).CrossRefGoogle Scholar
  7. 7.
    C. Boulanger, H. Hendrickson, R. R. Lorenz, P. M. Vanhoutte, Release of different relaxing factors by cultured porcine endothelial cells, Circ Res 64:1070–1078 (1989).PubMedGoogle Scholar
  8. 8.
    U. Hoeffner, M. Felctou, N. A. Flavahan, P. M. Vanhoutte, Canine arteries release two different endothelium-derived relaxing factors, Am J Physiol 257:H330–H333 (1989).PubMedGoogle Scholar
  9. 9.
    R. M. J. Palmer, A. G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, G. Chadhur, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc Natl Acad Sci USA 84:9265–9269 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    P. R. Myers, R. L. Minor Jr., R. Guerra Jr., J. N. Bates, D. G. Harrison, Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrocysteine than nitric oxide, Nature 345:161–163 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Fcletou and P. M. Vanhoutte, Endothelium-dependent hyperpolarization of canine coronary smooth muscle, Br J Pharmacol 93:515–524 (1988).Google Scholar
  13. 13.
    K. Komori, R. R. Lorenz, P. M. Vanhoutte, Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle, Am J Physiol 255:H207–H212 (1988).PubMedGoogle Scholar
  14. 14.
    M. Tare, H. C. Parkington, H. A. Coleman, T. O. Neild, G. J. Dusting, Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium, Nature 346:69–71 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    K. M. Boje and H.-L. Fung, Endothelial nitric oxide generating enzyme(s) in the bovine aorta: Subcellular location and metabolic characterization, J Pharmacol Exp Ther 253:20–26 (1990).PubMedGoogle Scholar
  16. 16.
    M. J. Peach, H. A. Singer, N. J. Izzo, A.X. Loeb, Role of calcium in endothelium-dependent relaxation of arterial smooth muscle, Am J Card 59:35A–45A (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Lückhoff and R. Busse, Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential, Pflugers Arch 416:305–311 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    P. M. Vanhoutte, Vascular endothelium and Ca2+ antagonists, J Cardiovasc Pharmacol 12 (suppl.6):S21–S28 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Johns, T. W. Lategan, N. J. Lodge, U. S. Ryan, C. Van Breeman, D. J. Adams, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells, Tissue and Cell 19:733–745 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    N. G. Morgan, Inositol phospholipid turnover in cell calcium homeostasis, in: “Cell Signaling,” N. G. Morgan, ed., The Guilford Press, New York (1989) pp. 91–117.Google Scholar
  21. 21.
    N. A. Flavahan, H. Shimokawa, P. M. Vanhoutte, Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries, J Physiol (Lond) 408:549–560 (1989).PubMedGoogle Scholar
  22. 22.
    A. Liickhoff and R. Busse, Activators fo potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents, Naunyn-Schmiedeberg’s Arch Pharmacol 342:94–99 (1990).Google Scholar
  23. 23.
    R. Sauvé, M. Chahine, J. Tremblay, P. Hamet, Single channel analysis of the electrical response of cells to bradykinin stimulation: Contribution of Ca++-dependent K+ channel, J Hypertension 8 (suppl. 7):F193–F201 (1990).Google Scholar
  24. 24.
    T. Sakai, Acetylcholine induces Ca++-dependent K+ current in rabbit endothelial cells. J Pharmacol 53:234–246 (1990).Google Scholar
  25. 25.
    R. Sauvé, L. Parent, C. Simoneau, G. Roy, External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine endothelial cells, Pflugers Arch 412:469–481 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Chen, H. Hashitani, H. Suzuki, Endothelium-dependent relaxation and hyperpolarization of canine coronary artery smooth muscles in relation to the electrogenic Na-K pump, Br J Pharmacol 98:950–956 (1989).PubMedGoogle Scholar
  27. 27.
    P. C. Brunet and J.-L. Beny, Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture, Blood Vessels 26:228–234 (1989).PubMedGoogle Scholar
  28. 28.
    C. Lynch III, S. Vogel, N. Sperelakis, Halothane depression of myocardial slow action potentials, Anesthesiology 55:360–368 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Blaise, J. Hughes, J. C. Sill, J. Buluran, G. Caille, Attenuation of contraction of isolated canine coronary arteries by enflurane and halothane Can J Anaesth 38:111–115 (1990).CrossRefGoogle Scholar
  30. 30.
    N. Yashima, A. Wada, F. Izumi, Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells, Anesthesiology 64:466–472 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    R. L. Jayakody, C. T. Kappagod, M. P. Senaratn, N. Sreehara, Absence of effect of calcium antagonists on endothelium-dependent relaxation of rabbit aorta, Br J Pharmacol 91:155–164 (1987).PubMedGoogle Scholar
  32. 32.
    O. Scharff, B. Foder, Halothane inhibits hyperpolarization and potassium channels in human red blood cells, Eur J Pharmacol 159:165–173 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    R. A. Nicoll and D. V. Madison, General anesthetics hyperpolarize neurons in the vertebrate central nervous system, Science 217:1055–1057 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    K. Krnjevic, Cellular and synaptic effects of general anesthetics, in: “Molecular and Cellular Mechanisms of Anesthetics,” S.H. Roth and K.W. Miller, eds., Plenum Medical Book Co., New York (1986).Google Scholar
  35. 35.
    N. G. Morgan, Guanine nucleotidc binding proteins as signal transducers, in: “Cell Signaling,” N. G. Morgan, ed., The Guilford Press, New York (1989) pp. 35–57.Google Scholar
  36. 36.
    M. M. Puig, H. Turndorf, W. Warner, Effect of pertussis toxin on the interaction of azepoxide and halothane, J Pharmacol Exp Ther 252:1156–1159 (1990).PubMedGoogle Scholar
  37. 37.
    N. A. Flavahan and P. M. Vanhoutte, Pertussis toxin inhibits endothelium-dependent relaxations evoked by fluoride, Eur J Pharmacol 178:121–124 (1990).PubMedCrossRefGoogle Scholar
  38. 38.
    L. Triner, Y. Vulliemoz, M. Verosky, Action of halothane on adenylate cyclase, Mol Pharmacol 13:976–979 (1977).PubMedGoogle Scholar
  39. 39.
    K. J. Bernstein, M. Verosky, L. Triner, Effect of halothane on rat liver adenylate cyclase: Role of cytosolic components, Anesth Analg 64:531–537 (1987).Google Scholar
  40. 40.
    A. Liickhoff, A. Mulsh, R. Busse, cAMP attenuates autacoid release from endothelial cells: Relation to internal calcium, Am J Physiol 258:H960–966 (1990).Google Scholar
  41. 41.
    M. Tanguay, G. Blaise, L. Dumont, G. Bciquc, C. Hollman, Beneficial effects of volatile anesthetics on the decrease of coronary flow and myocardial contractility induced by oxygen-derived free radicals in isolated rabbit hearts, J Cardiovasc Pharmacol (in press).Google Scholar
  42. 42.
    R. Sauvé, Le patch clamp: une nouvelle façon de voir des canaux ioniques, Med Sci 9:536–545 (1987).Google Scholar
  43. 43.
    G. M. Rubanyi, R. R. Lorenz, P. M. Vanhoutte, Bioassay of endothelium-derived relaxing factors: Inactivation by catecholamines, Am J Physiol 249:H95–H101 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Gilbert A. Blaise
    • 1
  1. 1.Department d’AnesthesieUniversite de Montreal, Hopital Notre DameMontrealCanada

Personalised recommendations