Endothelium-Derived Relaxing Factor (EDRF)

Production from L-Arginine
  • Roger A. Johns
  • Appavoo Rengasamy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


Recent investigations have greatly improved our understanding of the chemical nature of endothelium-derived relaxing factor (EDRF) and the regulation and metabolic pathway of its production. EDRF is a potent but labile relaxing factor with a biologic half-life of between 6.3 and 50 seconds in an oxygenated aqueous medium.1,2 The production of EDRF from the endothelium requires an increase in intracellular calcium.3,6 Following its production and release from the endothelial cell, EDRF is transferred to the vascular smooth muscle (VSM) where it activates soluble guanylate cyclase resulting in an increase in smooth muscle cyclic GMP concentration, which correlates with its relaxing action.7–13 Extremes of both high and low oxygen tension inhibit the production or stability of EDRF.14–15 Early investigations into the chemical nature of EDRF implicated an unstable, non-prostanoid oxidation product of arachidonic acid or some type of free radical.1,16–18 A great deal of recent evidence, however, suggests that EDRF is nitric oxide or a similar nitrogen oxide species.19–29 EDRF can be formed from L-arginine by a pathway involving a calcium-, calmodulin-and NADPH-dependent enzyme.30–39 EDRF synthesis has now been described in a wide range of cell types in addition to the endothelium, and indeed EDRF may be the second messenger responsible for the activation of guanylate cyclase in most cells containing the enzyme.34,35,38–43 This manuscript will present data from our laboratory which support these and other pharmacologic characteristics of EDRF.


Nitric Oxide Sodium Nitroprusside Soluble Guanylate Cyclase Branch Pulmonary Artery Microcarrier Bead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. M. Griffith, D. H. Edwards, M. J. Lewis, A. C. Newby and A. H. Henderson, The nature of endothelium-dependent vascular relaxing factor, Nature 308:645–647 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    R. J. Gryglewski, R. M. J. Palmer and S. Moncada, Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor, Nature 320:454–456 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    C. J. Long and T. W. Stone, The release of endothelium-derived relaxing factor is calcium dependent, Blood Vessels 22:205–208 (1985).PubMedGoogle Scholar
  4. 4.
    H. A. Singer and M. J. Peach, Calcium-and endothelial-mcdiated vascular smooth muscle relaxation in rabbit aorta, Hypertension 4(Suppl 2): 19–25 (1982).PubMedGoogle Scholar
  5. 5.
    N. J. Izzo, A. L. Loeb, R. A. Johns and M. J. Peach, Intracellular calcium flux accompanies the release of endothelium-derived relaxing factor (EDRF) and prostacyclin (PGI2) from cultured endothelial cells, Fed Proc 45:198 (1986).Google Scholar
  6. 6.
    A. L. Loeb, N. J. Izzo, R. M. Johnson, J. C. Garrison and M. J. Peach, Endothelium-derived relaxing factor release associated with increased endothelial cell inositol trisphosphate and intracellular calcium, Am J Cardiol 62:366–406 (1988).CrossRefGoogle Scholar
  7. 7.
    S. Holzmann, Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips, J Cyclic Nucleotide Res 8:409–419 (1982).PubMedGoogle Scholar
  8. 8.
    R. Rapoport and F. Murad, Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle, role of cyclic GMP, J Cyclic Nucleotide Prot Phos Res 9:281–296 (1983).Google Scholar
  9. 9.
    R. Furchgott and D. Jothianandan, Relation of cyclic GMP levels to endothelium-dependent relaxation by acetylcholine in rabbit aorta, Fed Proc 42:619 (1983).Google Scholar
  10. 10.
    L. J. Ignarro, T. M. Burke, K. S. Wood, M. S. Wolin and P. J. Kadowitz, Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery, J Pharmacol Exp Ther 228:682–690 (1984).PubMedGoogle Scholar
  11. 11.
    R. M. Rapoport, M. B. Draznin and F. Murad, Mechanisms of adenosine triphosphate, thrombin and trypsin-induced relaxation of rat thoracic aorta, Circ Res 55:468–479 (1984).PubMedGoogle Scholar
  12. 12.
    R. A. Johns and M. J. Peach, Parabromophenacyl bromide inhibits endothelium-dependent arterial relaxation and cyclic GMP accumulation by effects produced exclusively in the smooth muscle, J Pharmacol Exp Ther 244:859–865 (1988).PubMedGoogle Scholar
  13. 13.
    A. L. Loeb, R. A. Johns, P. Milner and M. J. Peach, Studies on endothelium-derived relaxing factor from cultured cells, Hypertension 9(Suppl III):186–192 (1987).Google Scholar
  14. 14.
    R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    J. G. DeMey and P. M. Vanhoutte, Anoxia and endothelium-dependent reactivity of the canine femoral artery, J Physiol (Lond) 335:65–74 (1983).Google Scholar
  16. 16.
    H. A. Singer and M. J. Peach, Endothelium-dependent relaxation of rabbit aorta: I. Relaxation stimulated by arachidonic acid, J Pharmacol Exp Ther 226:790–795 (1983).PubMedGoogle Scholar
  17. 17.
    R. F. Furchgott, Role of endothelium in responses of vascular smooth muscle, Circ Res 53:557–573 (1983).PubMedGoogle Scholar
  18. 18.
    R. F. Furchgott, The role of endothelium in the responses of vascular smooth muscle to drugs, Annu Rev Pharmacol Toxicol 24:175–197 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    J. L. Amezcua, G. J. Dusting, R. M. Palmer and S. Moncada, Acetylcholine induces vasodilation in the rabbit isolated heart through the release of nitric oxide, the endogenous nitrovasodilator, Br J Pharmacol 95:830–834 (1988).PubMedGoogle Scholar
  20. 20.
    M. Kelm, M. Fcelisch, R. Spahr, H.-M. Piper, E. Noack and J. Schrader, Quantitative and kinetic characterization of nitric oxide in EDRF released from cultured endothelial cells, Biochem Biophys Res Comm 154:236–244 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    R. M. Palmer, A. G. Ferrige and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327:524–526 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    R. M. Palmer, D. S. Ashton and S. Moncada, Vascular endothelial cells synthesize nitric oxide from L-arginine, Nature 333:664–666 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    L. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns and G. Chaudhuri, Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc Natl Acad Sci (USA) 84:9265–9269 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    L. J. Ignarro, R. E. Byrns, G. M. Buga and K. S. Wood, Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologie and chemical properties identical to those of nitric oxide radical, Circ Res 61:866–879 (1987).PubMedGoogle Scholar
  25. 25.
    L. J. Ignarro, G. M. Buga, R. E. Byrns, K. S. Wood and G. Chaudhuri, Endothelium-derived relaxing factor and nitric oxide possess identical pharmacologie properties as relaxants of bovine arterial and venous smooth muscle, J Pharmacol Exp Ther 246:218–226 (1988).PubMedGoogle Scholar
  26. 26.
    L. J. Ignarro, R. E. Byrns, G. M. Buga, K. S. Wood and G. Chaudhuri, Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and Superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation, J Pharmacol Exp Ther 244:181–189 (1988).PubMedGoogle Scholar
  27. 27.
    L. J. Ignarro, M. E. Gold, G. M. Buga, R. E. Byrns, K. S. Wood, G. Chaudhuri and G. Frank, Basic polyamino acids rich in arginine, lysine, or ornithine cause both enhancement of and refractoriness to formation of endothelium-derived nitric oxide in pulmonary artery and vein, Circ Res 64:315–329 (1989).PubMedGoogle Scholar
  28. 28.
    L. J. Ignarro, Endothelium-derived nitric oxide: actions and properties. FASEB J 3:31–36 (1989).PubMedGoogle Scholar
  29. 29.
    S. Moncada, M. W. Radomski and R. M. Palmer, Endothelium-derived relaxing factor: Identification as nitric oxide and role in the control of vascular tone and platelet function, Biochem Pharmacol 37:2495–2501 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Mayer and E. Bohme, Ca++-dependent formation of an L-arginine derived activator of soluble guanylate cyclase in bovine lung, FEBS Lett 256:211–214 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    B. Mayer, K. Schmidt, P. Humbert and E. Bohme, Biosynthesis of endothelium-derived relaxing factor: A cytosolic enzyme in porcine aortic endothelial cells Ca++-dependently converts L-arginine into an activator of soluble guanylal cyclase, Biochem Biophys Res Comm 164:678–685 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    M. A. Marietta, P. S. Yoon, R. Iyengar, C. D. Leas and J. S. Wishnok, Macrophage oxidation of L-arginine to nitrite and nitrate: Nitric oxide is an intermediate, Biochemistry 27:8706–8711 (1988).CrossRefGoogle Scholar
  33. 33.
    D. J. Stuehr, N. S. Kwon, S. S. Gross, B. A. Thiel, R. Levi and C. F. Nathan, Synthesis of nitrogen oxides from L-arginine by macrophage cytosol: Requirement for inducible and constituitive components, Biochem Biophys Res Comm 161:420–426 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    D. S. Bredt and S. H. Snyder, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme, Proc Natl Acad Sci (USA) 87:682–685 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    D. S. Bredt and S. H. Snyder, Nitric oxide mediates glutamate-linkcd enhancement of cGMP levels in the cerebellum, Proc Natl Acad Sci (USA) 86:9030–9033 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    A. Mulsch, E. Bassenge and R. Busse, Nitric oxide synthesis in endothelial cytosol: Evidence for a calcium-dependent and a calcium-independent mechanism, Naunyn-Schmiedeberg’s Arch Pharmacol 340:767–770 (1989).Google Scholar
  37. 37.
    K. M. Boje and H. L. Fung, Endothelial nitric oxide generating cnzyme(s) in the bovine aorta: Subcellular localization and metabolic characterization, J Pharmacol Exp Ther 253:20–26 (1990).PubMedGoogle Scholar
  38. 38.
    R. M. Palmer, D. D. Rees, D. S. Ashton and S. Moncada, L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation, Biochem Biophys Res Comm 153:1251–1256 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    R. M. J. Palmer and S. Moncada, A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells, Biochem Biophys Res Comm 158:348–352 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    U. Forstermann, K. Ishii, L. D. Gorsky and F. Murad, The cytosol of N1E-115 neuroblastoma cells synthesizes an EDRF-like substance that relaxes rabbit aorta, Naunyn-Schmiedeberg’s Arch Pharmacol 340:771–774 (1989).Google Scholar
  41. 41.
    H. Schroder and K. Schror, Cyclic GMP stimulation by vasopressin in LLC-PKj kidney epithelial cells is L-arginine-dependent, Naunyn-Schmiedeberg’s Arch Pharmacol 340:475–477 (1989).CrossRefGoogle Scholar
  42. 42.
    R. G. Knowles, M. Palacios, R. M. J. Palmer and S. Moncada, Formation of nitric oxide from L-arginine in the central nervous system: Mechanism for stimulation of the soluble guanylate cyclase, Proc Natl Acad Sci (USA) 86:5159–5162 (1989).PubMedCrossRefGoogle Scholar
  43. 43.
    M. Palacios, R. G. Knowles, R. M. J. Palmer and S. Moncada, Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands, Biochem Biophys Res Comm 165:802–809 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    R. A. Johns, M. J. Peach, J. M. Linden and A. Tichotsky, NG-monomethyl-L-arginine causes specific, dose-dependent inhibition of cyclic GMP accumulation in cocultures of bovine pulmonary endothelium and rat vascular smooth muscle through an action specific to the endothelium, Circ Res 67:979–985 (1990).PubMedGoogle Scholar
  45. 45.
    R. A. Johns, N. J. Izzo, P. J. Milner, A. L. Loeb and M. J. Peach, Use of cultured cells to study the relationship between arachidonic acid and endothelium-derived relaxing factor, Am J Med Sci 295:287–292 (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    D. J. Stone and R. A. Johns, Endothelium-dependent effects of halothane, enflurane, and isoflurane on isolated rat aortic vascular rings, Anesthesiology 71:126–132 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    S. M. Muldoon, J. L. Hart, K. A. Bowen and W. Freas, Attenuation of endothelium-mediated vasodilation by halothane, Anesthesiology 68:31–37 (1988).PubMedCrossRefGoogle Scholar
  48. 48.
    W. R. Tracey, J. L. Linden, M. J. Peach and R. A. Johns, Comparison of spectrophotometric and biological assays for nitric oxide and EDRF: Nonspecificity of the diazotization reaction for nitric oxide and failure to detect EDRF, J Pharmacol Exp Ther 252:922–928 (1990).PubMedGoogle Scholar
  49. 49.
    K. Shikano, C. J. Long, E. H. Ohlstein and B. A. Berkowitz, Comparative pharmacology of endothelium derived relaxing factor and nitric oxide, J Pharmacol Exp Ther 247:873–881 (1988).PubMedGoogle Scholar
  50. 50.
    K. Shikano, E. H. Ohlstein and B. A. Berkowitz, Differential selectivity of endothelium-derived relaxing factor and nitric oxide in smooth muscle, Br J Pharmacol 92:483–485 (1987).PubMedGoogle Scholar
  51. 51.
    C. J. Long, K. Shikano and B. A. Berkowitz, Anion exchange resins discriminate between nitric oxide and EDRF, Eur J Pharmacol 142:317–318 (1987).PubMedCrossRefGoogle Scholar
  52. 52.
    C. J. Long and B. A. Berkowitz, What is the relationship between the endothelium-derived relaxant factor and nitric oxide? Life Sci 45:1–14 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    J. L. Beny and P. C. Brunet, Neither nitric oxide nor nitroglyccrin accounts for all the characteristics of endothelially mediated vasodilatation of pig coronary arteries, Blood Vessels 25:308–311 (1988).PubMedGoogle Scholar
  54. 54.
    G. J. Dusting, M. A. Read and A. G. Stewart, Endothelium-derived relaxing factor released from cultured cells: Differentiation from nitric oxide, Clin Exp Pharmacol Physiol 15:83–92 (1988).PubMedCrossRefGoogle Scholar
  55. 55.
    U. Hoeffner, C. Boulanger and P. M. Vanhoutte, Proximal and distal dog coronary arteries respond differently to basal EDRF but not to NO, Am J Physiol 256:H828–H831 (1989).PubMedGoogle Scholar
  56. 56.
    P. R. Myers, R. Guerra Jr and D. G. Harrison, Release of NO and EDRF from cultured bovine aortic endothelial cells, Am J Physiol 256:H1030–H1037 (1989).PubMedGoogle Scholar
  57. 57.
    P. R. Myers, R. L. Minor, R. Guerra, J. N. Bates and D. G. Harrison, Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide, Nature 345:161–163 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roger A. Johns
    • 1
  • Appavoo Rengasamy
    • 1
  1. 1.Department of AnesthesiologyUniversity of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations