Effects of Lipid-Soluble Agents on Sodium Channel Function in Normal and MH-Susceptible Skeletal Muscle Cultures

  • Steven J. Wieland
  • Jeffrey E. Fletcher
  • Qi-hua Gong
  • Henry Rosenberg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


Some skeletal muscle abnormalities, including susceptibility to malignant hyperthermia (MH), may be traced to alterations of specific membrane functions. These in turn may be caused directly by mutations in the specific proteins subserving these functions, or by mutations which indirectly alter properties of membrane-bound proteins. Growth of human skeletal muscle cells in primary culture allows pharmacological and physiological exploration of potential regulatory mechanisms which cannot be studied by other means. Subtle, persistent differences in sodium channel function are present in MH-susceptible cells compared to non-susceptible cells. At the moment we are examining the hypothesis that these differences may be due to abnormal lipid metabolism which alters the processing or final environment of certain membrane proteins.


Arachidonic Acid Sarcoplasmic Reticulum Human Skeletal Muscle Sodium Current Malignant Hyperthermia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Gronert, Malignant hyperthermia, Anesthesiology 53:395–423 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Rosenberg and J. E. Fletcher, Malignant hyperthermia, in: “Muscle Relaxants: Side Effects and Rational Approach to Selection,” I. Azar, ed., Marcel Dekker, New York (1987) pp. 115–148.Google Scholar
  3. 3.
    T. V. McCarthy, J. M. S. Healy, J. J. A. Heffron, M. Lehane, T. Deufel, F. Lehmann-Horn, M. Farrall and K. Johnson, Localisation of the malignant hyperthermia susceptibility locus to human chromosome 19ql2-13.2, Nature 343:562–564 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    J. E. Fletcher and H. Rosenberg, Laboratory methods for malignant hyperthermia diagnosis, in: “Experimental Malignant Hyperthermia,” C. H. Williams, ed., Springer-Verlag, New York (1988) pp. 121–140.CrossRefGoogle Scholar
  5. 5.
    J. E. Fletcher and H. Rosenberg, In vitro interaction between halothane and succinylcholine in human skeletal muscle: Implications for malignant hyperthermia and masseter muscle rigidity, Anesthesiology 63:190–194 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    J. R. Mickelson, J. A. Ross, B. K. Reed and C. F. Louis, Enhanced Ca2+-induced calcium release by isolated sarcoplasmic reticulum vesicles from malignant hyperthermia susceptible pig muscle, Biochim Biophys Acta 862:318 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    K. S. Cheah and A. M. Cheah, Mitochondrial calcium transport and calcium-activated phospholipase in porcine malignant hyperthermia, Biochim Biophys Acta 634:70–84 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    J. R. Mickelson, J. A. Ross, R. J. Hyslop, E. M. Gallant and C. F. Louis, Skeletal muscle sarcolemma in malignant hyperthermia: Evidence for a defect in calcium regulation, Biochim Biophys Acta 897:364–376 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    T. E. Nelson, Abnormality in clacium release from skeletal sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia, J Clin Invest 72:862–870 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    T. E. Nelson, E. H. Flewellen and D. W. Arnet, Prolonged electromechanical coupling time in skeletal muscle of pigs susceptible to malignant hyperthermia, Muscle and Nerve 6:263–268 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    E. M. Gallant, Porcine malignant hyperthermia: No role for plasmalemmal depolarization (letter), Muscle and Nerve 11:785–786 (1988).PubMedGoogle Scholar
  12. 12.
    P. A. Iaizzo, F. Lehmann-Horn, S. R. Taylor and E. M. Gallant, Malignant hyperthermia: Effects of halothane on the surface membrane, Muscle and Nerve 12:178–183 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    S. J. Wieland, J. E. Fletcher, H. Rosenberg and Q. H. Gong, Malignant hyperthermia: Slow sodium current in cultured human muscle cells, Am J Physiol 257:C759–C765 (1989).PubMedGoogle Scholar
  14. 14.
    J. E. Fletcher, L. Tripolitis, K. Erwin, S. Hanson, H. Rosenberg, P. A. Conti, J. Beech, Fatty acids modulate calcium-induced calcium release from skeletal muscle heavy sarcoplasmic reticulum fractions: Implications for malignant hyperthermia, Biochem Cell Biol 68:1195–1201 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    K. S. Cheah and A. M. Cheah, Skeletal muscle mitochondrial phospholipase A2 and the interaction of mitochondria and sarcoplasmic reticulum in porcine malignant hyperthermia, Biochim Biophys Acta 638:40–49 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    J. E. Fletcher and H. Rosenberg, In vitro muscle contractures induced by halothane and suxamethonium: II. Human skeletal muscle from normal and malignant hyperthermia susceptible patients, Br J Anaesth 58:1433–1439 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    J. E. Fletcher, H. Rosenberg, K. Michaux, L. Tripolitis and F. H. Lizzo, Triglycerides, not phospholipids, are the source of elevated free fatty acids in muscle from patients susceptible to malignant hyperthermia, Eur J Anesth 6:355–362 (1989).Google Scholar
  18. 18.
    S. C. Chow and M. Jondal, Polyunsaturated free fatty acids stimulate an increase in cytolsolic Ca2+ by mobilizing the inositol 1,4,5-trisphospahte-sensitive Ca2+ pool in T cells through a mechanism independent of phosphoinositide turnover, J Biol Chem 265:902–907 (1990).PubMedGoogle Scholar
  19. 19.
    C. Holm, T. G. Kirchgessner, K. L. Svenson, G. Fredrikson, S. Nilsson, C. G. Miller, J. E. Shively, C. Heinzmann, R. S. Sparkes, T. Mohanda, A. J. Lusis, P. Belfrage and M. C. Schotz, Hormone-sensitive lipase: Sequence, expression and chromosomal localization to 19 cent-q13.3, Science 241:1503–1506 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    R. C. Levitt, V. A. McKusick, J. E. Fletcher and H. Rosenberg, Gene candidate (letter), Nature 345:297–298 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    O. P. Hamill, A. Mary, E. Neher and B. Sakmann, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch 391:85–100 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Probstle, R. Rudel and J. P. Ruppersberg, Hodgkin-Huxley parameters of the sodium channels in human myoballs, Pflugers Arch 412:264–269 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Trautmann, C. Dclaporte and A. Marty, Voltage-dependent channels of human muscle cultures, Pflugers Arch 406:163–172 (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    C. Frelin, H. P. M. Vijverberg, G. Romey, P. Vigne and M. Lazdunski, Different functional states of tetrodotoxin sensitive and tetrodotoxin resistant Na+ channels occur during the in vitro development of rat skeletal muscle, Pflugers Arch 402:121–128 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    B. P. Bean, P. Shrager and D. A. Goldstein, Modification of sodium and potassium channel gating kinetics by ether and halothane, J Gen Physiol 77:233–253 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    J. P. Ruppersberg and R. Rudel, Differential effects of halothane on adult and juvenile sodium channels in human muscle, Pflugers Arch 412:17–21 (1988).PubMedGoogle Scholar
  27. 27.
    R. L. Ruff, L. Simoncini and W. Stuhmer, Slow sodium channel inactivation in mammalian muscle: A possible role in regulating excitability, Muscle and Nerve 11:502–510 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    D. Kim and D. E. Clapham, Potassium channels in cardiac cells activated by arachidonic acid and phospholipids, Science 244:1174–1176 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    R. W. Ordway, J. V. Walsh, J. J. Singer, Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells, Science 244:1176–1179 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    D. J. Linden and A. Routtenberg, Cis-fatty acids, which activate protein kinase C, attenuate Na+ and Ca2+ currents in mouse neuroblastoma cells, J Physiol (Lond) 419:95–119 (1989).Google Scholar
  31. 31.
    P. S. Foster, E. Gesini, C. Claudianos, K. C. Hopkinson and M. A. Denborough, Inositol 1,4,5-trisphosphate phosphatase deficiency and malignant hyperpyrexia in swine, Lancet July 15:124–127 (1989).CrossRefGoogle Scholar
  32. 32.
    J. R. Mickelson, E. M. Gallant, L. A. Litterer, K. M. Johnson, W. W. Rempel and C. F. Louis, Abnormal sarcoplamic reticulum ryanodine receptor in malignant hyperthermia, J Biol Chem 263:9310–9315 (1988).PubMedGoogle Scholar
  33. 33.
    E. Benoit, A. Corbier and J. M. Dubois, Evidence for two transient sodium currents in the frog node of Ranvier, J Physiol (Lond) 361:339–360 (1985).Google Scholar
  34. 34.
    D. R. Matteson and C. M. Armstrong, Evidence for a population of sleepy sodium channels in squid axon at low temperature, J Gen Physiol 79:739–758 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    D. H. Wu, P. J. Sides and R. Narahashi, Interaction of deoxycholate with the sodium channel of squid axon membranes, J Gen Physiol 76:355–379 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    B. Hille, “Ionic Channels of Excitable Membranes,” Sinauer Associates, Sunderland, MA (1984) pp. 96–116, 303–328.Google Scholar
  37. 37.
    J. R. Mickelson, H. S. Thatte, T. M. Beaudry, E. M. Gallant and C. F. Louis, Increased skeletal muscle acetylcholinesterase activity in porcine malignant hyperthermia, Muscle and Nerve 10:723:727 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    R. Rudel, J. P. Ruppersberg and W. Spittelmeister, Abnormalities of the fast sodium current in myotonic dystrophy, recessive generalized myotonia, and adynamica episodica, Muscle and Nerve 12:281–287 (1989).PubMedCrossRefGoogle Scholar
  39. 39.
    Y. Kurachi, H. Ito, T. Sugimoto, T. Shimizu, I. Miki and M. Ui, Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel, Nature 337:555–557 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Steven J. Wieland
    • 1
  • Jeffrey E. Fletcher
    • 2
  • Qi-hua Gong
    • 1
  • Henry Rosenberg
    • 2
  1. 1.Department of AnatomyHahnemann UniversityPhiladelphiaUSA
  2. 2.Department of AnesthesiologyHahnemann UniversityPhiladelphiaUSA

Personalised recommendations