Mechanisms of Negative Inotropy of Halothane, Enflurane and Isoflurane in Isolated Mammalian Ventricular Muscle

  • Philippe R. Housmans
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


The volatile anesthetics halothane, enflurane, and isoflurane are potent myocardial depressants. They cause a concentration-dependent negative inotropic effect in humans, experimental animals, and in cardiac tissues isolated from a variety of mammalian species.1 Their negative inotropic effect has been attributed to interference with 1) transsarcolemmal Ca2+ influx; 2) Ca2+ uptake and release from the sarcoplasmic reticulum; and 3) Ca2+ sensitivity of the contractile proteins. The purpose of this communication is to review the relative importance of the decrease in intracellular Ca2+ availability and of the decrease in myofibrillar Ca2+ sensitivity brought about by these anesthetics. Our conclusions will be illustrated by recent studies in intact ventricular muscle, i.e., the right ventricular papillary muscle of the ferret.


Sarcoplasmic Reticulum Papillary Muscle Volatile Anesthetic Negative Inotropic Effect Force Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. F. Rusy and H. Komai, Anesthetic depression of myocardial contractility: A review of possible mechanisms, Anesthesiology 67:745–766 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    P. R. Housmans and I. Murat, Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret: I. Contractility, Anesthesiology 69:451–463 (1988).PubMedCrossRefGoogle Scholar
  3. 3.
    P. R. Housmans and I. Murat, Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret: II. Relaxation, Anesthesiology 69:464–471 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    P. R. Housmans, Negative inotropy of halogenated anesthetics in ferret ventricular myocardium, Am J Physiol 259:H827–H834 (1990).PubMedGoogle Scholar
  5. 5.
    Z. J. Bosnjak and J. P. Kampine, Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat, Am J Physiol 251:H374–H381 (1986).Google Scholar
  6. 6.
    P. R. Housmans, L. A. Wanek and E. G. Carton, Halothane, enflurane and isoflurane decrease myofibrillar Ca2+ responsiveness in intact mammalian ventricular muscle, Biophys J 57:554a (1990).Google Scholar
  7. 7.
    M. Katsuoka, K. Kobayashi and S. T. Ohnishi, Volatile anesthetics decrease calcium content of isolated myocytes, Anesthesiology 70:954–960 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    D. M. Wheeler, R. T. Rice, R. G. Hansford and E. G. Lakatta, The effect of halothane on the free intracellular calcium concentration of isolated rat heart cells, Anesthesiology 69:578–583 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Lynch III and M. J. Frazer, Depressant effects of volatile anesthetics upon rat and amphibian ventricular myocardium: Insights into anesthetic mechanisms of action, Anesthesiology 70:511–522 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    J. S. Herland, F. J. Julian and D. G. Stephenson, Halothane increases Ca2+ efflux via Ca2+ channels of sarcoplasmic reticulum in chemically skinned rat myocardium, J Physiol (London) 426:1–18 (1990).PubMedGoogle Scholar
  11. 11.
    T. E. Nelson and T. Sweo, Ca2+ uptake and Ca2+ release by skeletal muscle sarcoplasmic reticulum: Differing sensitivity to inhalational anesthetics, Anesthesiology 69:571–577 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    E. S. Casella and T. J. J. Blanck, The effect of halothane on the binding of calcium by cardiac troponin C, Biophys J 53:583a (1988).Google Scholar
  13. 13.
    T. Shibata, T. J. J. Blanck, K. Sagawa and W. Hunter, The effect of halothane, enflurane, and isoflurane on the dynamic stiffness of rabbit papillary muscle, Anesthesiology 70:496–702 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    P. W. Brandt, R. N. Cox, M. Kawai and T. Robinson, Regulation of tension in skinned muscle fibres: Effect of cross-bridge kinetics on apparent Ca2+ sensitivity, J Gen Physiol 79:997–1016 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Murat, R. Ventura-Clapier and G. Vassort, Halothane, enflurane, and isoflurane decrease calcium sensitivity and maximal force in detergent-treated rat cardiac fibers, Anesthesiology 69:892–899 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    J. R. Blinks, P. H. Mattingly, B. R. Jewell, M. van Lccuwen, G. C. Harrer and D. G. Allen, Practical aspects of the use of acquorin as a calcium indicator: assay, preparation, microinjection, and interpretation of signals, Meth Enzymol 57:292–328 (1978).CrossRefGoogle Scholar
  17. 17.
    S. M. Baylor, W. K. Chandler and M. W. Marshall, Sarcoplasmic retieulum calcium release in frog skeletal muscle fibres estimated from arscnazo III calcium transients, J Physiol (Lond) 344:625–666 (1983).PubMedGoogle Scholar
  18. 18.
    A. Fabiato, Calcium release in skinned cardiac cells: Variations with species, tissues, and development, Fed Proc 41:2238–2244 (1982).PubMedGoogle Scholar
  19. 19.
    W. G. Wier, Cytoplasmic [Ca2+] in mammalian ventricle: Dynamic control by cellular processes, Annu Rev Physiol 52:467–485 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Philippe R. Housmans
    • 1
  1. 1.Department of AnesthesiologyMayo Medical School and Mayo FoundationRochesterUSA

Personalised recommendations