Volatile Anesthetics and Second Messengers in Cardiac Tissue

  • Yvonne Vulliemoz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


The depression of myocardial contractility induced by volatile anesthetics is well documented by in vivo and in vitro studies. These agents’ direct myocardial depressant effect has been attributed to a decreased availability of free intracellular calcium to the contractile proteins and to a decreased sensitivity of the contractile proteins to activation by calcium. The volatile anesthetics have been shown to depress slow inward calcium currents in the sarcolemma, as well as inhibit calcium uptake and release by the sarcoplasmic reticulum.1 All these processes are modulated by hormones, neurotransmitters and other endogenous factors which regulate calcium movements either directly or indirectly via a second messenger system. Therefore, the effect of volatile anesthetics on calcium homeostasis and myocardial contractility may be due either to a direct interaction of the anesthetic with proteins regulating calcium movements or may be secondary to an action of the anesthetic on metabolic pathways modulating myocardial contractility.


Papillary Muscle Myocardial Contractility Pertussis Toxin Contractile Force Inositol Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. F. Rusy, H. Komai, Anesthetic depression of myocardial contractility: A review of possible mechanisms, Anesthesiology 67:745–766 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Gangat, Y. Vulliemoz, M. Verosky, P. Danilo, K. Bernstein, L. Triner, Action of halothane on myocardial adenylate cyclase of rat and cat, Proc Soc Exp Biol Med 160:154–159 (1979).PubMedGoogle Scholar
  3. 3.
    Y. Vulliemoz, M. Verosky, L. Triner, Effect of halothane on myocardial cyclic AMP and cyclic GMP content of mice, J Pharmacol Exp Ther 236:181–186 (1986).PubMedGoogle Scholar
  4. 4.
    Y. Vulliemoz, M. Verosky, L. Triner, Myocardial cyclic nucleotides in response to volatile anesthetics, Fed Proc 41:1303 (1982).Google Scholar
  5. 5.
    A. M. Katz, Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines, Adv Cyclic Nucleotide Res 11:303–343 (1979).PubMedGoogle Scholar
  6. 6.
    S. Moncada, R. J. Flower, J. R. Vane, Prostaglandins, prostacyclin, thromboxane A2 and leukotrienes, in “The Pharmacological Basis of Therapeutics,” 7th edition, A. G. Gilman, L. S. Gilman, T. W. Rall, F. Murad, eds., Macmillan Publishing Company, New York (1985) pp. 660–673.Google Scholar
  7. 7.
    M. J. Berridge, Inositol triphosphate and diacylglycerol: Two interacting second messengers, Ann Rev Biochem 56:159–193 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    S. H. Roth and K. W. Miller, eds., “Molecular and Cellular Mechanisms of Anesthetics,” Plenum Press, New York (1986).Google Scholar
  9. 9.
    E. G. Lapetina, Regulation of arachidonic acid production: Role of phospholipases C and A, Trends in Pharmacol Sci 3:115–118 (1982).CrossRefGoogle Scholar
  10. 10.
    F. Murad, W. P. Arnold, C. K. Mittal, T. M. Braughler, Properties and regulation of guanylate cyclase and some proposed functions of cyclic GMP, Adv Cyclic Nucleotide Res 11:175–204 (1979).PubMedGoogle Scholar
  11. 11.
    Y. Vulliemoz, M. Verosky, Halothane interaction with guanine nucleotide binding proteins in mouse heart, Anesthesiology 69:876–880 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Birnbaumer, J. Codina, R. Mattera, A. Yatani, N. Scherer, M. J. Toro, A. M. Brown, Signal transduction by G proteins, Kidney Int 32 (Suppl. 23):S14–S37 (1987).Google Scholar
  13. 13.
    H. M. Han, R. B. Robinson, J. P. Bilezikian, S. F. Steinberg, Developmental changes in guanine nucleotide regulatory proteins in the rat myocardial α1-adrenergic receptor complex, Circ Res 65:1763–1773 (1989).PubMedGoogle Scholar
  14. 14.
    M. Endoh, M. Maruyama, T. Iijima, Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart, Am J Physiol 249:H309–H320 (1985).PubMedGoogle Scholar
  15. 15.
    M. J. Berridge, R. M. C. Dawson, C. P. Downes, J. P. Heslop, R. F. Irvine, Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem J 212:473–482 (1983).PubMedGoogle Scholar
  16. 16.
    R. J. Flower, G. J. Blackwell, The importance of phospholipase A2 in prostaglandin biosynthesis, Biochem Pharmacol 25:285–291 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    M. F. Roberts, R. A. Deems, T. C. Mincey, E. A. Dennis, Chemical modification of the histidine residue in phospholipase A2, J Biol Chem 252:2405–2411 (1977).PubMedGoogle Scholar
  18. 18.
    R. J. Flower, Drugs which inhibit prostaglandin biosynthesis, Pharmacol Rev 26:33–65 (1974)PubMedGoogle Scholar
  19. 19.
    J. R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nature (New Biology) 231:232–235 (1971).Google Scholar
  20. 20.
    M. Hamberg, On the formation of thromboxane B2 and 12L-hydroxy-5,8,10,14-eicosatetraynoic acid (12L0-20:4) in tissues from guinea pig brain, Biochim Biophys Acta 432:651–654 (1976).Google Scholar
  21. 21.
    D. E. Griswold, P. J. Marshall, E. F. Webb, R. Godfrey, J. Newton Jr, M. J. Dimartino, H. M. Sarau, J. G. Gleason, G. Poste, N. Hanna, SK&F 86002: A structurally novel anti-inflammatory agent that inhibits lipoxygenase and cyclooxygenase-media ted metabolism of arachidonic acid, Biochem Pharmacol 36:3463–3470 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    Y. Hattori, R. Levi, Negative inotropic effect of leukotrienes: Leukotrienes C4 and D4 inhibit calcium-dependent contractile responses in potassium-depolarized guinea-pig myocardium, J Pharmacol Exp Ther 230:646–651 (1984).PubMedGoogle Scholar
  23. 23.
    G. Allan, R. Levi, The cardiac effects of prostaglandins and their modification by the prostaglandin antagonist N-0164, J Pharmacol Exp Ther 214:45–59 (1980).Google Scholar
  24. 24.
    L. Sterin-Borda, L. Canga, A. Pissani, A. L. Gimeno, Inotropic effecy of PGE1 and PGE2 on isolated rat atria: Influence of adrenergic mechanisms, Prostaglandins 20:825–837 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    D. K. Basu, M. Karmazyn, Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids, J Pharmacol Exp Ther 242:673–685 (1987).PubMedGoogle Scholar
  26. 26.
    C. Lynch, III, Differential depression of myocardial contractility by halothane and isoflurane in vitro, Anesthesiology 64:620–631 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    W. J. Wolf, M. B. Neal, B. P. Mathew, D. E. Bee, Comparison of the in vitro myocardial depressant effects of isoflurane and halothane anesthesia, Anesthesiology 69:660–666 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    P. R. Housmans, I. Murat, Comparative effects of halothane, enflurane, and isoflurane at equipotent anesthetic concentrations on isolated ventricular myocardium of the ferret. I. Contractility, Anesthesiology 69:451–463 (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    E. S. Casella, N. D. A. Suite, Y. I. Fisher, T. J. J. Blanck, The effect of volatile anesthetics on the pH dependence of calcium uptake by cardiac sarcoplasmic reticulum, Anesthesiology 67:386–390 (1987).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Y. Su, W. G. L. Kerrick, Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers, Pflugers Arch 380:29–34 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    H. Komai, B. F. Rusy, Negative inotropic effects of isoflurane and halothane in rabbit papillary muscle, Anesth Analg 66:29–33 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    D. M. Wheeler, R. T. Rice, R. G. Hansford, E. G. Lakatta, The effect of halothane on the free intracellular calcium concentration of isolated rat heart cells, Anesthesiology 69:578–583 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    M. J. Berridge, Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem J 212:849–858 (1983).PubMedGoogle Scholar
  34. 34.
    T. M. Nosek, M. F. Williams, S. T. Zeigler, R. E. Godt, Inositol triphosphate enhances calcium release in skinned cardiac and skeletal muscle, Am J Physiol 250:C807–811 (1986).PubMedGoogle Scholar
  35. 35.
    H. Otani, H. Otani, D. K. Das, Alpha-1 adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles, Circ Res 62:8–17 (1988).PubMedGoogle Scholar
  36. 36.
    P. W. Majerus, T. M. Connolly, H. Deckmyn, T. S. Ross, T. E. Bross, H. Ishii, V. S. Bansal, D. B. Wilson, The metabolism of phosphoinositide-derived messenger molecules, Science 234:1519–1526 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    M. J. Berridge, C. P. Downes, M. R. Hanley, Lithium amplifies agonist dependent phosphatidylinositol responses in brain and salivary glands, Biochem J 206:587–595 (1982).PubMedGoogle Scholar
  38. 38.
    J. Poggioli, J. C. Suplice, G. Vassort, Inositol phosphate production following α1-adrenergic, muscarinic or electrical stimulation in isolated rat heart, FEBS Letters 206:292–298 (1986).PubMedCrossRefGoogle Scholar
  39. 39.
    J. Scholz, B. Schaefer, W. Schmitz, H. Scholz, M. Steinfath, M. Lohse, U. Schwabe, J. Puurunen, Alpha-1 adrenoceptor-mediated positive inotropic effect and inositol triphosphate increace in mammalian heart, J Pharmacol Exp Ther 245:327–335 (1988).PubMedGoogle Scholar
  40. 40.
    S. F. Steinberg, L. M. Kaplan, T. Inouye, J. I. Fang Zhang, R. B. Robinson, Alpha-1 adrenergic stimulation of 1,4,5-inositol triphosphate formation in ventricular myocytes, J Pharmacol Exp Ther 250:1141–1148 (1989).PubMedGoogle Scholar
  41. 41.
    J. C. Miller, Anesthetics and phospholipid metabolism, in: “Molecular Mechanisms of Anesthesia,” B. R. Fink, ed., Raven Press, New York (1975) pp. 439–447.Google Scholar
  42. 42.
    R. S. Aronstam, B. L. Anthony, R. L. Dennison, Halothane effects on muscarinic acetylcholine receptor complexes in rat brain, Biochem Pharmacol 35:667–672 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    A. J. Robinson-White, S. M. Muldoon, L. Elson, D. M. Collado-Escobar, Evidence that barbiturates inhibit antigen-induced responses through interactions with a GTP-binding protein in rat basophilic leukemia (RBL-2H3) cells, Anesthesiology 72:996–1004 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Okuda, M. Miyazaki, K. Kuriyama, Alterations in cerebral β-adrenergic receptor-adenylate cyclase system induced by halothane, ketamine and ethanol, Neurochem Int 6:237–244 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    N. M. Scherer, M. J. Toro, M. L. Entman, L. Birnbaumer, G-protein distribution in canine cardiac sarcoplasmic reticulum and sarcolemma: Comparison to rabbit skeletal muscle membranes and to brain and erythrocyte G-proteins, Arch Biochem Biophys 259:431–440 (1987).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Yatani, Y. Imoto, J. Codina, S. L. Hamilton, A. M. Brown, L. Birnbaumer, The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels, J Biol Chem 263:9887–9895 (1988).PubMedGoogle Scholar
  47. 47.
    T. Katada, M. Ui, Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein, Proc Natl Acad Sci (USA) 79:3129–3133 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    P. J. Pfaffinger, J. M. Martin, D. D. Hunter, N. M. Nathanson, B. Hille, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature 317:536–538 (1985).PubMedCrossRefGoogle Scholar
  49. 49.
    R. A. Nicoll, D. V. Madison, General anesthetics hyperpolarize neurons in the vertebrate central nervous system, Science 217:1055–1057 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    I. S. Segal, J. Tinklenberg, R. W. Aldrich, M. Maze, Decreased potassium channel conductance, encoded by the SHAKER locus in drosophila, increases volatile anesthetic requirements, Anesthesiology 71:A641 (1989).CrossRefGoogle Scholar
  51. 51.
    P. W. L. Tas, H. G. Kress, K. Koschel, Volatile anesthetics inhibit the ion flux through Ca2+-activated K+ channels of rat glioma C6 cells, Biochim Biophys Acta 983:264–268 (1989).PubMedCrossRefGoogle Scholar
  52. 52.
    N. S. Cook, The pharmacology of potassium channels and their therapeutic potential, TIPS 9:21–28 (1988).PubMedGoogle Scholar
  53. 53.
    B. Drenger, T. J. J. Blanck, Volatile anesthetics depress the binding of calcium channel blocker to purified cardiac sarcolemma, Anesthesiology 69:A16 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Yvonne Vulliemoz
    • 1
  1. 1.Departments of Anesthesiology and Pharmacology, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations