Molecular Analysis of Receptor Binding and Viral Tropism

  • A. Cordonnier
  • L. Montagnier
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 300)


Human Immunodeficiency Virus (HIV), the etiologic agent of AIDS (Acquired Immunodeficiency Syndrome) displays a selective tropism for CD4-positive lymphocytes and for CD4-positive cells of the mononuclear-phagocyte lineage. Infection of target cells is initiated by the specific interaction of HIV envelope protein gpl20 and the CD4 molecule on the cell surface1,2,3. Despite extensive genetic variation of gpl20 among different HIV isolates, each uses the CD4 molecule as a cellular receptor. Furthermore, both the HIV-1 and HIV-2 interact with the same epitopes on the CD4 molecule4,5 while the extracellular envelope proteins of these two viruses display little antigenic cross-reactivity and share only 40% overall amino acid identity6. This suggests that conserved regions of gpl20 are involved in binding to the CD4 molecule.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type U937 Cell Envelope Protein Recombinant Vaccinia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dalgleish, A., Beverly P., Clapham P., Crawford D., Greaves M., and Weiss R., (1984), The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (London) 312:763–766.CrossRefGoogle Scholar
  2. 2.
    McD.ougal, J., Kennedy M., Sligh J., Cort S., Mawle A., and Nicholson J. (1986), Binding of the HTLV III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science, 231, 382–385.CrossRefGoogle Scholar
  3. 3.
    Klatzmann, D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.C. and Montagnier L. (1984), T-lymphocyte T4 molecule behaves as the receptor for the human retrovirus LAV. Nature (London), 312, 767–768.CrossRefGoogle Scholar
  4. 4.
    Sattentau, Q. J., Dalgleish A. G., Weiss R. A. and Beverly P. C. L. (1986), Epitopes of the CD4 antigen and HIV infection. Science, 234, 1120–1122.PubMedCrossRefGoogle Scholar
  5. 5.
    Sattentau, Q. J. and Weiss R. A. (1988), The CD4 antigen: Physiological ligand and HIV receptor, Cell, 52, 631–633.PubMedCrossRefGoogle Scholar
  6. 6.
    Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L. and Alizon M. (1987), Genome organisation and transactivation of the human immunodeficiency virus type 2. Nature (London), 326, 662–669.CrossRefGoogle Scholar
  7. 7.
    Cordonnier A., Riviere Y., Montagnier L. and Emerman M. (1989), The effects of mutations in hyperconserved regions of the extracellular glycoprotein of HIV-1 on receptor binding. J.Virol., 63, 4464–4468.PubMedGoogle Scholar
  8. 8.
    Dowbenko D., Nakamura G., Fennie C., Shimasaki C., Riddle L., Harris R., Gregory T. and Lasky L. (1988), Epitope mapping of the Human Immunodeficiency virus type 1 gpl20 with monoclonal antibodies. J. Virol., 62, 4703–4711.PubMedGoogle Scholar
  9. 9.
    Cordonnier A., Montagnier L. and Emerman M. (1989), Single amino acid changes in the human immunodeficiency virus envelope affect viral tropism and receptor binding. Nature, 340, 571–574.PubMedCrossRefGoogle Scholar
  10. 10.
    Wain-Hobson, S., Sonigo P., Danos O., Cole S., and Alizon M. (1985), Nucleotide sequence of the AIDS virus, LAV. Cell, 40, 9–17.CrossRefGoogle Scholar
  11. 11.
    Matthews, T.J., Weinhold K. J., Lyerly H. K., Langlois A. J., Wigzell H., and Bolognesi D. P. (1987). Proc. Natl. Acad. Sci. USA, 84, 5424–5428.PubMedCrossRefGoogle Scholar
  12. 12.
    Fennie, C. and Lasky, L. A. (1989). Model for intracellular folding of the human immunodeficiency virus type 1 gpl2 0. J.Virol., 63, 639–646.PubMedGoogle Scholar
  13. 13.
    Fenouillet E., Clerget-Raslain B., Gluckman J. C., Guetard D., Montagnier L. and Bahraoui M. (1989), Role of N-linked glycans in the interaction between the envelope glycoprotein of HIV and its CD4 cellular receptor. Structural enzymatic analysis. J. Exp. Med.Google Scholar
  14. 14.
    Dewar, R.L., Vasudevachari, M. B., Natarajan V. and Salzman N. P. (1989), Biosynthesis and processing of human immunodeficiency virus type 1 envelope glycoproteins: Effects of monensin on glycosylation and transport. J. Virol., 63, 2452–2456.PubMedGoogle Scholar
  15. 15.
    Montefiori D. C., Robinson W. E. and Mitchell W. M. (1988), Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA, 85, 9248–9252.PubMedCrossRefGoogle Scholar
  16. 16.
    Pal R., Gallo R. C. and Sarngadharan M. G. (1988), Processing of the structural proteins of human immunodeficiency virus type 1 in presence of monensin and cerulenin. Proc. Natl. Acad. Sci. USA, 85, 9283–9286.PubMedCrossRefGoogle Scholar
  17. 17.
    Kowalski, M., J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. Haseltine, and J. Sodroski (1987). Functional regions of the envelope glycoprotein of the human immunodeficiency virus type 1. Science 237:1351–1355.PubMedCrossRefGoogle Scholar
  18. 18.
    Lasky, L. A., G. M. Nakamura, D. H. Smith, C. Fennie, C. Shimasaki, E. Patzer, O. Berman, T. Gregory, and D. J. Capon., 1987. Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with CD4 receptor. Cell 50:975–PubMedCrossRefGoogle Scholar
  19. 19.
    Linsley, P. S., Ledbetter J. A., Kinney-Thomas E., and Hu S. L. (1988), Effects of anti-gpl20 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1. J. Virol., 62, 3695–3702.PubMedGoogle Scholar
  20. 20.
    Emerman, M., Vazeux, R. & Peden, K. (1989). The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell, 57, 1155–1165.PubMedCrossRefGoogle Scholar
  21. 21.
    Adachi, A., H.E. Gendelmann, S. Koenig, T. Folks, R. Willey, A. Rabson, and M.A. Martin. 1986. Production of acquired immunodeficiency syndrome-associated retrovirus in human and non-human cells transfected with an infectious molecular clone. J. Virol. 59: 284–291.PubMedGoogle Scholar
  22. 22.
    Willey, R. L., D. H. Smith, L. A. Lasky, T. S. Theodore, P.L. Earl, B. Moss, D. J. Capon, and M. A. Martin. 1988. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J. Virol. 62:139–PubMedGoogle Scholar
  23. 23.
    Gartner, S., Markovits, P., Markovitz, D. M., Kaplan M. H., Gallo, R. C., Popovic M. (1986). The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219.PubMedCrossRefGoogle Scholar
  24. 24.
    Koyanagi, Y., Miles S., Mitsuyasu R. T., Merrill J. E., Vinters H.V., Chen I. S.(1988).Science 236, 819–822.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Cordonnier
    • 1
  • L. Montagnier
    • 1
  1. 1.Unité d’Oncologie Virale (CNRS UA 1157)Institut PasteurParis Cedex 15France

Personalised recommendations