Advertisement

The Assembly of the HIV-1 Env Glycoprotein into Dimers and Tetramers

  • Robert W. Doms
  • Patricia L. Earl
  • Bernard Moss
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 300)

Abstract

The envelope (env) glycoprotein of human immunodeficiency virus 1 (HIV-1), initially synthesized as a precursor molecule termed gp160, is cleaved into two noncovalently associated subunits prior to delivery to the plasma membrane. We have studied the oligomeric structure of this protein using chemical cross-linking, velocity gradient sedimentation, and SDS-resistance. We find that gp160 forms stable homodimers after synthesis. After cleavage to gp120/gp41 the molecule becomes less stable to detergent solubilization and centrifugation but remains dimeric. Interactions between the 129 amino terminal residues in the ectodomains of adjoining gp41 subunits are both sufficient and necessary for assembly. In addition, tetramers composed of two dimers were also formed. Larger structures were not observed. The tetrameric paramyxovirus F protein, which has structural and functional similarities to the HIV-1 env protein, also forms a dimer of dimers.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Vesicular Stomatitis Virus Critical Micellar Concentration Sedimentation Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.G. Dalgleish, P.C.L. Beverley, P.R. Clapham, D.H. Crawford, M.F. Greaves, and R.A. Weiss, The CD4 (T4) antigen is an essential component of the receptor of the AIDS retrovirus, Nature 312:763 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Klatzman, E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T. Hercend, J.C. Gluckman, and L. Montagnier, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312:767 (1984).CrossRefGoogle Scholar
  3. 3.
    J.S. McDougal, A. Mawie, S. Cort, J. Nicholson, G.D. Cross, J.A. Scheppler-Campbell, D. Hicks, and J. Sligh, Cellular tropism of the human retrovirus HTLVIII/LAV. 1. Role of T-cell activation and expression of the T4 antigen, J. Immunol. 135:3151 (1985).PubMedGoogle Scholar
  4. 4.
    J.S. McDougal, M.S. Kennedy, J.M. Sligh, S.P. Cort, A. Mawle, and J.K.A. Nicholson, Binding of HTLV-III/LAV to T4+ T cells by a complex of the llOK viral protein and the T4 molecule, Science 231:383 (1986).CrossRefGoogle Scholar
  5. 5.
    P.J. Maddon, A.G. Dalgleish, J.S. McDougal, P.R. Clapham, R.A. Weiss, and R. Axel, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47:333 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    B.S. Stein, S.D. Gowda, J.D. Lifson, R.C. Penhallow, K.G. Bensch and E.G. Engelman, pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W.C. Goh, E. Terwillger, A. Dayton, C. Rosen, W. Haseltine and J. Sodroski, Functional regions of the envelope glycoprotein of human immunodeficiency virus type I, Science 237:1351 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    J.S. Allan, J.E. Coligan, F. Barin, M.F. McLane, J.G. Sodroski, C. A. Rosen, W.A. Haseltine, W.A. Lee, and M. Essex, Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III, Science 228:1091 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    F.D. Veornese, A.L. De Vico, T.D. Copeland, S. Oroszlan, R.C. Gallo, and M.G. Sarngadharan, Characterization of gp41 as the transmembreane protein coded by the HTLV-III/LAV envelope gene, Science 229:1402 (1985).CrossRefGoogle Scholar
  10. 10.
    C. Fennie and L. Lasky, Model for intracellular folding of human immunodeficiency virus type 1 gp120, J. Virol. 63:639 (1989).PubMedGoogle Scholar
  11. 11.
    R.L. Willey, J.S. Bonifacino, B.J. Potts, M.A. Martin and R.D. Klausner, Biosynthesis, cleavage and degradation of the human immunodeficiency virus 1 envelope glycoprotein gpl60, Proc. Natl. Acad. Sci. 85:9580 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    J.M. McCune, L.B. Rabin, M.B. Feinberg, M. Lieberman, J.C. Kosek, G.R. Reyes, and I.L. Weissman, Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus, Cell 53:55 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    J. White, M. Kielian, and A. Helenius, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16:151 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    T. Stegmann, R.W. Doms, and A. Helenius, Protein-mediated membrane fusion, Annu. Rev. Biophys. Chem. 18:187 (1989).CrossRefGoogle Scholar
  15. 15.
    J.K. Rose and R.W. Doms, Regulation of protein export from the endoplasmic reticulum, Ann. Rev. Cell Biol. 4:257 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    S.M. Hurtley and A. Helenius, Protein oligomerization in the endoplasmic reticulum, Annu. Rev. Cell Biol., in press.Google Scholar
  17. 17.
    J. Lippincott-Schwartz, J.S Bonifacino, L.C. Yuan and R.D. Klausner, Degradation from the endoplasmic reticulum: Disposing of newly synthesized proteins, Cell 54:209 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Ratner, W. Haseltine, R. Patarca, K.J. Livak, B. Starchch, S.F. Josephs, E.R. Doran, J.A. Rafalski, E.A. Whitehorn, K. Baumesiter, L. Ivanoff, S.R. Petteway, M.L. Pearson, J.A. L.J. Takemoto, C.F. Fox, F.C. Jensen, J.H. Elder, and R.A. Lerner, Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on cell surfaces, Proc. Natl. Acad. Sci. 75:3644 (1978).CrossRefGoogle Scholar
  19. 19.
    S. Chakrabarti, M. Robert-Guroff, F. Wong-Stahl, R.C. Gallo, and B. Moss, Expression of the HTLV-III envelope gene by a recombinant vaccinia virus, Nature 320:535 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Earl and B. Moss, in preparation.Google Scholar
  21. 21.
    CR. McEwen, Tables for estimating sedimentation through linear concentration gradients of sucrose solution, Anal. Biochem. 20:114 (1967).PubMedCrossRefGoogle Scholar
  22. 22.
    R.G. Martin and B.N. Ames, A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem. 236:1372 (1961).PubMedGoogle Scholar
  23. 23.
    R.W. Doms and A. Helenius, Quaternary structure of influenza virus hemagglutnin after acid treatment, J. Virol. 60:833 (1986).PubMedGoogle Scholar
  24. 24.
    R.W. Doms, D.S. Keller, A. Helenius and W.E. Balch, Role for ATP in regulating the assembly and transport of Vesicular Stomatitis virus G protein trimers, J. Cell Biol. 105:1957 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    J.D. Lifson, M.B. Feinberg, G.R. Reyes, L. Babins, B. Bonapour, S. Chakrabarti, B. Moss, F. Wong-Stahl, D.C. Steiner, and E.G. Engelman, Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein, Nature 323:725 (1987).CrossRefGoogle Scholar
  26. 26.
    R.W. Doms, Oligomerization and protein transport, Meth. Enzymology, in press.Google Scholar
  27. 27.
    M.-A. Rey, B. Krust, A.G. Laurent, L. Montagnier and A.G. Hovanessian, Characterization of human immunodeficiency virus type 2 envelope glycoproteins: Dimerization of the glycoprotein precursor during processing, J. Virol. 63:647 (1989).PubMedGoogle Scholar
  28. 28.
    M. Silverberg and V.T. Marchesi, The anomolous electrophoretic behavior of the major sialoglycoprotein from the human erythrocyte, J. Biol. Chem. 253:95 (1978).PubMedGoogle Scholar
  29. 29.
    O. Sechoy, J.R. Philippot, and A. Bienvenue, F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross linking, J. Biol. Chem. 262:11519 (1987).PubMedGoogle Scholar
  30. 30.
    M.N. Waxham, D.C. Merz, and J.S. Wolinsky, Intracellular maturation of mumps virus hemagglutinin-neuraminidase glycoprotein: Conformational changes detected with monoclonal antibodies, J. Virol. 59:1186 (1986).Google Scholar
  31. 31.
    A. Pinter, WJ. Honnen, S.A. Tilley, C. Bona, H. Zaghouani, M.K. Gorny, and S. Zolla-Pazner, Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1, J. Virol. 63:2674 (1989).PubMedGoogle Scholar
  32. 32.
    D. Einfeld and E. Hunter, Oligomeric structure of a prototype retrovirus glycoprotein, Proc. Natl. Acad. Sci. 85:8688 (1988).PubMedCrossRefGoogle Scholar
  33. 33.
    R.W. Doms, A. Ruusala, C. Machamer, J. Helenius, A. Helenius and J.K. Rose, Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of VSV G protein, J. Cell Biol. 107:89 (1988).PubMedCrossRefGoogle Scholar
  34. 34.
    C.E. Machamer, and J.K. Rose. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding, J. Biol. Chem. 263:5955 (1988).PubMedGoogle Scholar
  35. 35.
    C.S. Copeland, K.-P. Zimmer, K.R. Wagner, G.A. Healey, I. Mellman and A. Helenius, Folding, trimerization and transport are sequential events in the biogenesis of influenza virus hemagglutinin, Cell 53:197 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    C.S. Copeland, R.W. Doms, E.M. Bolzau, R.G. Webster and A. Helenius, Assembly of influenza hemagglutinin trimers and its role in intracellular transport, J. Cell Biol. 103:1179 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    M.-J. Gething, K. McCammon, and J. Sambrook, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 107:939 (1986).CrossRefGoogle Scholar
  38. 38.
    P. Gallagher, J. Henneberry, I. Wilson, J. Sambrook, and M.-J. Gething, Addition of carbohydrate side-chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule, J. Cell Biol. 107:2059 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    I. Wilson, J. Skehel, and D.C. Wiley, Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3Å resolution, Nature 292:366 (1981).CrossRefGoogle Scholar
  40. 40.
    R.H. Vogel, S.W. Provencher, C.-M. von Bonsdorff, M. Adrian, and J. Dubochet, Envelope structure of Semliki Forest virus reconstituted from cryoelectron micrographs, Nature 320:533 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    L.J. Takemoto, C.F. Fox, F.C. Jensen, J.H. Elder, and R.A. Lerner, Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on cell surfaces, Proc. Natl. Acad. Sci. 75:3644 (1978).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Pinter and E. Fleissner, Structural studies of retroviruses: Characterization of oligomeric complexes of murine and feline leukemia virus envelope and core components formed upon cross-linking, J. Virol. 30:157 (1979).PubMedGoogle Scholar
  43. 43.
    J. Racevskis and N.H. Sarkar, Murine mammary tumor virus stuctural protein interactions: Formation of oligomeric complexes with cleavable cross-linking agents, J. Virol. 35:937 (1980).PubMedGoogle Scholar
  44. 44.
    H.R. Gelderbloom, H. Reupke, and G. Pauli, Loss of envelope antigens of HTLV-III/LAV, a factor in AIDS pathogenesis? Lancet ii:1016 (1985).CrossRefGoogle Scholar
  45. 45.
    B. Chesebro and K. Wehrly, Development of a sensitive quantitative focal assay for human immunodeficiency virus infectivity, J. Virol. 62:3779 (1988).PubMedGoogle Scholar
  46. 46.
    A. Helenius and K. Simons, Solubilization of membranes by detergents, Biochim. Biophys. Acta 415:29 (1975).PubMedGoogle Scholar
  47. 47.
    C. Tanford and J.A. Reynolds, Characterization of membrane proteins in detergent solutions, Biochim. Biophys. Acta, 457:133 (1976).PubMedGoogle Scholar
  48. 48.
    M. Schawaller, G.E. Smith, J. J. Skehel, and D.C. Wiley, Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, Virology 172:367 (1989).PubMedCrossRefGoogle Scholar
  49. 49.
    M.A.K. Markwell and C.F. Fox, Protein-protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking, J. Virol. 33:152 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Robert W. Doms
    • 1
    • 2
  • Patricia L. Earl
    • 1
  • Bernard Moss
    • 1
  1. 1.Laboratory of Viral DiseasesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations