Fusion of HIV-1 and SIVmac with Liposomes and Modulation of HIV-1 Infectivity

  • Nejat Düzgüneş
  • Charles E. Larsen
  • Krystyna Konopka
  • Dennis R. Alford
  • Lawrence J. T. Young
  • Thomas P. McGraw
  • Brian R. Davis
  • Shlomo Nir
  • Myra Jennings
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 300)


Human immunodeficiency virus (HIV) and simian immunodeficiency virus from macaques (SIVmac) are the etiological agents of the acquired immunodeficiency syndrome (AIDS), and simian AIDS, respectively (Barré-Sinoussi et al., 1983; Gallo et al, 1984; Levy et al, 1984; Clavel et al., 1986; Letvin et al., 1985; De Vita et al., 1988). The genetic sequence of SIVmac is closely related to that of HIV-2 (Chakrabarti et al, 1987) and HIV-1 (Chakrabarti et al., 1987; Desrosiers, 1988), and infection of macaques by SIVmac represents the best animal model for human AIDS. The molecular and cellular mechanisms of entry of these viruses into their host cells are not well understood. The involvement of an endocytosis step before the fusion of the HIV-1 envelope with cellular membranes, and the requirement for acidic pH for fusion are topics of controversy (Maddon et al., 1986, 1988; Stein et al., 1987; Pauza and Price, 1988; McClure et al., 1988).


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Influenza Virus Human Immunodeficiency Virus Infection Simian Immunodeficiency Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barré-Sinoussi, F., Chermann, J. C., Rey, F., Nugeyre, M. T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Brun-Vézinet, F., Rouzioux, C., Rozenbaum, W., & Montagnier, L., 1983, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science 220:868–871.PubMedCrossRefGoogle Scholar
  2. Bosch, M. L., Earl, P. L., Fargnoli, K., Picciafuoco, S., Giombini, F., Wong-Staal, F., and Franchini, G., 1989, Identification of the fusion peptide of primate immunodeficiency viruses, Science 244:694–697.PubMedCrossRefGoogle Scholar
  3. Byrn, R. A., Sekigawa, I., Chamow, S. M., Johnson, J. S., Gregory, T. J., Capon, D. J. and Groopman, J. E., 1989, Characterization of in vitro inhibition of human immunodeficiency virus by purified recombinant CD4, J. Virol. 63:4370–4375.PubMedGoogle Scholar
  4. Chakrabarti, L., Guyader, M., Alizon, M., Daniel, M. D., Desrosiers, R. C., Tiollais, P., and Sonigo, P., 1987, Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses, Nature 328:543–547.PubMedCrossRefGoogle Scholar
  5. Cheng-Mayer, C., Rutka, J. T., Rosenblum, M. L., McHugh, T., Stites, D. P. and Levy, J. A., 1987, Human immunodeficiency virus can productively infect cultured human glial cells, Proc. Natl. Acad. Sci. USA 84:3526–3530.PubMedCrossRefGoogle Scholar
  6. Clapham, P. R., Weber, J. N., Whitby, D., Mcintosh, K., Dalgleish, A. G., Maddon, P. J., Deen, K. C., Sweet, R. W. and Weiss, R. A., 1989, Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells, Nature 337:368–370.PubMedCrossRefGoogle Scholar
  7. Clavel, F., Guétard, D., Brun-Vézinet, F., Chamaret, S., Rey, M.-A., Santos-Ferreira, M. O., Laurent, A. G., Dauguet, C., Katlama, C., Rouzioux, C., Klatzmann, D., Champalimaud, J. L., and Montagnier, L., 1986, Isolation of a new human retrovirus from West African patients with AIDS, Science 233:343–346.PubMedCrossRefGoogle Scholar
  8. Daar, E. S., Li, X. L., Moudgil, T., Ho, D. D., 1990, High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates, Proc. Natl. Acad. Sci. USA 87:6574–6578.PubMedCrossRefGoogle Scholar
  9. Dalgleish, A. G., Beverly, P. C. L., Clapham, P. R., Crawford, D. H., Greaves, M. F., and Weiss, R. A., 1984, The CD4 (T-4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312:763–766.PubMedCrossRefGoogle Scholar
  10. Debs, R. J., Freedman, L. P., Edmunds, S., Gaensler, K. L., Düzgünes, N. and Yamamoto, K. R., 1990, Regulation of gene expression in vivo by liposome-mediated delivery of a purified transcription factor, J. Biol. Chem. 265:10189–10192.PubMedGoogle Scholar
  11. Desrosiers, R. C., 1988, Simian immunodeficiency viruses. Annu. Rev. Microbiol. 42:607–625.PubMedCrossRefGoogle Scholar
  12. DeVita, V.T., Hellman, S. and Rosenberg, S. A., 1988, “AIDS: Etiology, Diagnosis, Treatment, and Prevention,” Lippincott, Philadelphia.Google Scholar
  13. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophvs. 100:119–130.CrossRefGoogle Scholar
  14. Doms, R. W., Helenius, A. and White, J., 1985, Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conformational change, J. Biol. Chem. 260:2973–2981.PubMedGoogle Scholar
  15. Düzgünes, N., 1985, Membrane fusion, Subcell. Biochem. 11:195–286.PubMedGoogle Scholar
  16. Düzgünes, N. and Shavnin, S. A., 1991, N-terminal peptides of viral fusion proteins: Interaction with phospholipid vesicles, Biochim. Biophys. Acta (submitted).Google Scholar
  17. Düzgünes, N., Wilschut, J., Fraley, R. and Papahadjopoulos, D., 1981, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium-and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophvs. Acta 642:182–195.CrossRefGoogle Scholar
  18. Düzgünes, N., Goldstein, J. A., Friend, D. S. and Feigner, P. L., 1989, Fusion of liposomes containing a novel cationic lipid N[l-(2,3-dioleyloxypropyl]-N,N,N-trimethyl-ammonium: Induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles, Biochemistry 28:9179–9184.PubMedCrossRefGoogle Scholar
  19. Düzgünes, N., Pedroso de Lima, M. C., Stamatatos, L., Flasher, D., Alford, D., Friend D. S. and Nir, S., 1991a, Fusion activity and inactivation of influenza virus: Kinetics of low-pH induced fusion with cultured cells, J. Gen. Virol. (submitted).Google Scholar
  20. Düzgünes, N., Larsen, C. E., Stamatatos, L. and Konopka, K., 1991b, Fusion of immunodeficiency viruses with liposomes and cells: Inhibition of HIV-1 infectivity by liposomes, in: “Membrane Interactions of Human Immunodeficiency Virus,” R. C. Aloia, C. C. Curtain and L. M. Gordon, eds., Wiley-Liss, New York (in preparation).Google Scholar
  21. Feigner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M., 1987, Lipofectin: a highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. U.S.A. 84:7413–7417.CrossRefGoogle Scholar
  22. Fisher, R. A., Bertonis, J. M., Meier, W., Johnson, V. A., Costopoulos, D. S., Liu, T., Tizard, R., Walker, B. D., Hirsch, M. S., Schooley, R. T. and Flavell, R. A., 1988, HIV infection is blocked in vitro by recombinant soluble CD4, Nature 331:76–78.PubMedCrossRefGoogle Scholar
  23. Freed, E. O., Myers, D. J. and Risser, R., 1991, Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain, J. Virol. 65:190–194.PubMedGoogle Scholar
  24. Gallaher, W. R., 1987, Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus, Cell 50:327–328.PubMedCrossRefGoogle Scholar
  25. Gallo, R. C., Salahuddin, S. Z., Popovic, M., Shearer, G. M., Kaplan, M., Haynes, B. F., Palker, T. J., Redfield, R., Oleske, J., Saafai, B., White, G., Foster, P., and Markham, P. D., 1984, Frequent detection and isolation of cytopathic retroviruses (HTLV-DI) from patients with AIDS, Science 224:500–503.PubMedCrossRefGoogle Scholar
  26. Gartner, S., Markovits, P., Makovitz, D. M., Kaplan, M. H., Gallo, R. C., Popovic, M., 1986, The role of mononuclear phagocytes in HTLV-III/VLAV infection, Science 233:215–219.PubMedCrossRefGoogle Scholar
  27. Gendelman, H. E., Orenstein, J. M., Martin, M. A., Ferrua, C., Mitra, R., Phipps, T., Wahl, L. A., Lane, H. C., Fauci, A. S., Burke, D. S., Skillman, D. and Meltzer, M. S., 1998, Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes, J. Exp. Med. 167:1428–1441.CrossRefGoogle Scholar
  28. Gonzalez-Scarano, F., Waxham, M. N., Ross, A. M. and Hoxie, J. A., 1987, Sequence similarities between human immunodeficiency virus gp41 and paramyxovirus fusion proteins, AIDS Res. Human Retrovir. 3:245–252.CrossRefGoogle Scholar
  29. Gowda, S. D., Stein, B. S., Mohagheghpour, N., Benike, C. J., and Engleman, E. G., 1989, Evidence that T cell activation is required for HIV-1 entry in CD4+lymphocytes, J. Immunol. 142:773–780.PubMedGoogle Scholar
  30. Harouse, J. M., Kunsch, C., Hartle, H. T., Laughlin, M. A., Hoxie, J. A., Wigdahl, B., and Gonzalez-Scarano, F., 1989, CD4-independent infection of human neural cells by human immunodeficiency virus type 1, J. Virol. 63:2527–2533.PubMedGoogle Scholar
  31. Harter, C., James, P., Bächi, T., Semenza, G. and Brunner, J., 1989, Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide.” J. Biol. Chem. 264:6459–6464.PubMedGoogle Scholar
  32. Haywood, A. M. and Boyer, B. P., 1984, Effect of lipid composition upon fusion of liposomes with Sendai virus membranes, Biochemistry 23:4161–4166.PubMedCrossRefGoogle Scholar
  33. Haywood, A. M. and Boyer, B. P., 1985, Fusion of influenza virus membranes with liposomes at pH 7.5, Proc. Natl. Acad. Sci. USA 82:4611–4615.PubMedCrossRefGoogle Scholar
  34. Helenius, A., Kartenbeck, J., Simons, K. and Fries, E., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84:404–420.PubMedCrossRefGoogle Scholar
  35. Hoekstra, D. and Klappe, K., 1986, Sendai virus-erythrocyte membrane interaction: Quantitative and kinetic analysis of viral binding, dissociation and fusion, J. Virol. 58:87–95.PubMedGoogle Scholar
  36. Hoekstra, D., and Kok, J. W., 1989, Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes, Biosci. Rep. 9:273–305.PubMedCrossRefGoogle Scholar
  37. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry 23:5675–5681.PubMedCrossRefGoogle Scholar
  38. Hoekstra, D., Klappe, K., de Boer, T., and Wilschut, J., 1985, Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes, Biochemistry 24:4739–4745.CrossRefGoogle Scholar
  39. Hussey, R. E., Richardson, N. E., Kowalski, M., Brown, N. R., Chang, H. C., Siliciano, R. F., Dorfman, T., Walker, B., Sodroski, J. and Reinherz, E. L., 1988, A soluble CD4 protein selectively inhibits HIV replication and syncytium formation, Nature 331:788–81.CrossRefGoogle Scholar
  40. Innes, C. L., Smith, P. B., Langenbach, R., Tindall, K. R. and Boone, L. R., 1990, Cationic liposomes (Lipofectin) mediate retroviral infection in the absence of specific receptors, J. Virol. 64:957–961.PubMedGoogle Scholar
  41. Kannagi, M., Yetz, J. M., and Letvin, N. L, 1985, In vitro growth characteristics of simian T-lymphotropic virus type III, Proc. Natl. Acad. Sci. USA 82:7053–7057.PubMedCrossRefGoogle Scholar
  42. Kielian, M., and Helenius, A., 1984, Role of cholesterol in fusion of Semliki Forest virus with membranes, J. Virol. 52:281–283.PubMedGoogle Scholar
  43. Klappe, K., Wilschut, J., Nir, S. and Hoekstra, D., 1986, Parameters affecting fusion between Sendai virus and liposomes. Role of viral proteins, liposome composition, and pH, Biochemistry 25:8252–8260.PubMedCrossRefGoogle Scholar
  44. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guétard, D., Hercend, T., Gluckman, J.-C, and Montagnier, L., 1984, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312:767–768.PubMedCrossRefGoogle Scholar
  45. Koenig, S., Hirsch, V. M., Olmsted, R. A., Powell, D., Maury, W., Rabson, A., Fauci, A. S., Purcell, R. H., and Johnson, P. R., 1989, Selective infection of human CD4+ cells by simian immunodeficiency virus: Productive infection associated with envelope glycoprotein-induced fusion, Proc. Natl. Acad. Sci. USA 86:2443–2447.PubMedCrossRefGoogle Scholar
  46. Konopka, K., Davis, B. R., Larsen, C. E., Alford, D. R., Debs, R. J. and Düzgünes, N., 1990, Liposomes modulate human immunodeficiency virus infectivity, J. Gen. Virol. 71:2899–2907.PubMedCrossRefGoogle Scholar
  47. Konopka, K., Davis, B. R. and Düzgünes, N., 1991a, HIV-1 infection of a non-CD4-expressing variant of HUT-78 cells: Lack of inhibition by Leu3a antibodies and enhancement by cationic DOTMA liposomes, in: “Mechanisms and Specificity of HIV Entry into Host Cells,” N. Düzgünes, ed., Plenum Press, New York (this volume).Google Scholar
  48. Konopka, K., Davis, B. R., Larsen, E. and Düzgünes, N., 1991b, Cardiolipin liposomes specifically inhibit HIV-1 infectivity, Antiviral Res. Suppl. I: 68.CrossRefGoogle Scholar
  49. Kowalski, M., Potz, J., Basiripour, L., Dorfman, T., Goh, W. C., Terwilliger, E., Dayton, A., Rosen, C., Haseltine, W., and Sodroski, J., 1987, Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1, Science 237:1351–1355.PubMedCrossRefGoogle Scholar
  50. Larsen, C., Alford, D., Young, L., Lee, K-D., McGraw, T. and Düzgünes, N., 1989, Fusion of simian immunodeficiency virus (SIVmac) with liposomes and erythrocyte ghosts, Abstr. V International Conference on AIDS (p. 634), Montreal, CanadGoogle Scholar
  51. Larsen, C. E., Alford, D. R., Young, L. J. T., McGraw, T. P. and Düzgünes, N., 1990a, Fusion of simian immunodeficiency virus (SIVmac) with liposomes and erythrocyte ghosts: Effect of liposome composition, low pH and calcium, J. Gen. Virol. 71:1947–1955.PubMedCrossRefGoogle Scholar
  52. Larsen, C. E., Alford, D. R., Jennings, M., Debs, R. and Düzgünes, N., 1990b, Fusion of HIV-1 with liposomes. Abstr. VI International Conference on AIDS (Vol. 2, p. 147), San Francisco, CA.Google Scholar
  53. Larsen, C. E., Alford, D. R., Nir, S., Jennings, M., Lee, K.-D. and Düzgünes, N., 1991, Fusion of HIV-1 with liposomes and erythrocyte ghosts, Biophvs. J. 59:131a.Google Scholar
  54. Letvin, N. L., Daniel, M. D., Sehgal, P. K., Desrosiers, R. C., Hunt, R. D., Waldron, L. M., MacKey, J. J., Schmidt, D. K., Chalifoux, L. V., and King, N. W., 1985, Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III, Science 230:71–73.PubMedCrossRefGoogle Scholar
  55. Levy, J. A., Hoffman, A. D., Kramer, S. M., Landis, J. A., Shimabukuro, J. M., and Oshiro, L. S., Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS, 1984, Science 225:840–842.PubMedCrossRefGoogle Scholar
  56. Lifson, J. D., Feinberg, M. B., Reyes, G. R., Rabin, L., Banapour, B., Chakrabarti, S., Moss, B., Wong-Staal, F., Steimer, K. S., and Engleman, E. G., 1986, Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein, Nature 323:725–728.PubMedCrossRefGoogle Scholar
  57. Loyter, A., Citovsky, V., and Blumenthal, R., 1988, The use of fluorescence dequenching measurements to follow viral membrane fusion events, Methods Biochem. Analysis 33:129–164.CrossRefGoogle Scholar
  58. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R., 1986, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47:333–348.PubMedCrossRefGoogle Scholar
  59. Maddon, P. J., McDougal, J. S., Clapham, P. R., Dalgleish, A. G., Jamal, S., Weiss, R. A. and Axel, R., 1988, HIV infection does not require endocytosis of its receptor, CD4, Cell 54:865–874.PubMedCrossRefGoogle Scholar
  60. Marsh, M., and Dalgleish, A., 1987, How do human immunodeficiency viruses enter cells? Immunol. Today 8:369–371.CrossRefGoogle Scholar
  61. McClure, M. O., Marsh, M., and Weiss, R. A., 1988, Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J. 7:513–518.PubMedGoogle Scholar
  62. McDougal, J. S., Mawle, A., Cort, S. P., Nicholson, J. K. A., Cross, G. D., Scheppler-Campbell, J. A., Hicks, D., and Sligh, J., 1985, Cellular tropism of the human retrovirus HTLV-III/LAV, J. Immunol. 135:3151–3162.PubMedGoogle Scholar
  63. McDougal, J. S., Kennedy, M. S., Sligh, J. M., Cort, S. P., Mawle, A. and Nicholson, J. K. A., 1986a, Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule, Science 231:382–385.PubMedCrossRefGoogle Scholar
  64. McDougal, S. J., Nicholson, J. K. A., Cross, G. D., Cort, S. P., Kennedy, M. S. and Mawle, A. C., 1986b, Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry, J. Immunol. 137:2937–2944.PubMedGoogle Scholar
  65. Misra, R., Venables, P. J. W., Plater-Zyberk, C., Watkins, P. F., and Maini, R. N., 1989, Anti-cardiolipin antibodies in infectious mononucleosis react with the membrane of activated lymphocytes, Clin. Exp. Immunol. 75:35–40.PubMedGoogle Scholar
  66. Nicholson, J. K. A., Cross, G. D., Callaway, C. S. and McDougal, J. S., 1986, In vitro infection of human monocytes with human T lymphotropic virus type in/lymphadenopathy-associated virus (HTLV-III/LAV), J. Immunol. 137:323–329.PubMedGoogle Scholar
  67. Nir, S., Stegmann, T. and Wilschut, J., 1986a, Fusion of influenza virus with cardiolipin liposomes at low pH: Mass action analysis of kinetics and fusion, Biochemistry 25:257–266.PubMedCrossRefGoogle Scholar
  68. Nir, S., Klappe, K. and Hoekstra, D., 1986b, Mass action analysis of kinetics and extent of fusion between Sendai virus and liposomes, Biochemistry 25:8261–8266.PubMedCrossRefGoogle Scholar
  69. Novick, S. L. and Hoekstra, D., 1988, Membrane penetration of Sendai virus glycoproteins during the early stages of fusion with liposomes as determined by hydrophobic photoaffinity labeling, Proc. Natl. Acad. Sci. USA 85:7433–7437.PubMedCrossRefGoogle Scholar
  70. Ohki, S., 1988, Surface tension, hydration energy and membrane fusion, in: “Molecular Mechanisms of Membrane Fusion,” pp. 123–138, S. Ohki, D. Doyle, T. D. Flanagan, S. K. Hui and E. Mayhew, eds., Plenum Press, New York.CrossRefGoogle Scholar
  71. Ohkuma, S. and Poole, B., 1980, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation by various agents, Proc. Natl. Acad. Sci. USA. 75:3327–3331.CrossRefGoogle Scholar
  72. Ohnishi, S.-I., 1988, Fusion of viral envelopes with cellular membranes, in: “Membrane Fusion in Fertilization, Cellular Transport and Viral Infection,” pp. 257–296, N. Düzgünes and F. Bronner, eds., Academic Press, San Diego.CrossRefGoogle Scholar
  73. Pauza, C. D., and Price, T. M., 1988, Human immunodeficiency virus infection of T cells and monocytes proceeds via receptor-mediated endocytosis. J. Cell Biol. 107:959–968.PubMedCrossRefGoogle Scholar
  74. Sattentau, Q., Dalgleish, A. G., Weiss, R. A. and Beverly, P. C. L., 1986, Epitopes of the CD4 antigen and HIV infection, Science 234:1120–1123.PubMedCrossRefGoogle Scholar
  75. Schlegel, R., Tralka, S. T., Willingham, M. C. and Pastan, I., 1983, Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site, Cell 32:639–646.PubMedCrossRefGoogle Scholar
  76. Sinangil, F., Loyter, A., and Volsky, D. J., 1988, Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching, FEBS Lett. 239: 88–92.PubMedCrossRefGoogle Scholar
  77. Sodroski, J., Goh, W. C., Rosen, C., Campbell, K., and Haseltine, W., 1986, Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity, Nature 322:470–474.PubMedCrossRefGoogle Scholar
  78. Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J., 1985, Kinetics of pH-dependent fusion between influenza virus and liposomes, Biochemistry 24:3107–3113.PubMedCrossRefGoogle Scholar
  79. Stegmann, T., Hoekstra, D., Scherphof, G., and Wilschut, J., 1986, Fusion activity of influenza virus. A comparison between biological and artificial target membrane vesicles, J. Biol. Chem. 261:10966–10969.PubMedGoogle Scholar
  80. Stegmann, T., Doms, R.W. and Helenius, A., 1989a, Protein-mediated membrane fusion. Annu. Rev. Biophys. Chem. 18:187–211.CrossRefGoogle Scholar
  81. Stegmann, T., Nir, S., and Wilschut, J., 1989b, Membrane fusion activity of influenza virus. Effects of gangliosides and negatively charged phospholipids in target liposomes, Biochemistry 28:1698–1704.PubMedCrossRefGoogle Scholar
  82. Stein, B. S., Gowda, S. D., Lifson, J. D., Penhallow, R. C., Bensch, K. G., and Engleman, E. G., 1987, pH-Independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659–668.PubMedCrossRefGoogle Scholar
  83. Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E., and Papahadjopoulos, D., 1980, Preparation of unilamellar liposomes of intermediate size (0.1-0.2 urn) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta 601:559–571.PubMedCrossRefGoogle Scholar
  84. Tateno, M., Gonzalez-Scarano, F., and Levy, J. A., 1989, Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells, Proc. Natl. Acad. Sci. USA 86:4287–4290.PubMedCrossRefGoogle Scholar
  85. Treat, J., Greenspan, A. R. and Rahman, A., 1989, Liposome encapsulated doxorubicin. Preliminary results of phase I and phase II trials, in: “Liposomes in the Therapy of Infectious Diseases and Cancer,” pp.353–365, G. Lopez-Berestein and I. J. Fidler, eds., Alan R. Liss, New York.Google Scholar
  86. Tycko, B., and Maxfield, F. R., 1982, Rapid acidification of endocytic vesicles containing α2-macroglobulin, Cell 28:643–652.PubMedCrossRefGoogle Scholar
  87. Weber, J., Clapham, P., McKeating, J. Stratton, M., Robey, E. & Weiss, FL, 1989, Infection of brain cells by diverse human immunodeficiency virus isolates: Role of CD4 as receptor, J. Gen. Virol. 70:2653–2660.PubMedCrossRefGoogle Scholar
  88. White, J. and Helenius, A., 1980, pH-Dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. USA 77:3273–3277.PubMedCrossRefGoogle Scholar
  89. White, J., 1990, Viral and cellular membrane fusion proteins, Annu. Rev. Phvsiol. 52:675–697.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Nejat Düzgüneş
    • 1
    • 2
    • 3
  • Charles E. Larsen
    • 1
  • Krystyna Konopka
    • 1
  • Dennis R. Alford
    • 1
  • Lawrence J. T. Young
    • 4
  • Thomas P. McGraw
    • 4
  • Brian R. Davis
    • 5
  • Shlomo Nir
    • 1
    • 6
  • Myra Jennings
    • 7
  1. 1.Cancer Research InstituteUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of MicrobiologyUniversity of the Pacific, School of DentistrySan FranciscoUSA
  4. 4.California Primate Research CenterUniversity of CaliforniaDavisUSA
  5. 5.Medical Research Institute of San Francisco at Pacific Presbyterian Medical CenterSan FranciscoUSA
  6. 6.Department of Soil and Water SciencesThe Hebrew University of JerusalemRehovotIsrael
  7. 7.Comparative Oncology LaboratoryUniversity of CaliforniaDavisUSA

Personalised recommendations