Thyroid Hormone Control of Brain and Motor Development: Molecular, Neuroanatomical, and Behavioral Studies

  • S. A. Stein
  • P. M. Adams
  • D. R. Shanklin
  • G. A. Mihailoff
  • M. B. Palnitkar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 299)


Thyroid hormones, T3 and T4, have been shown to play significant but poorly understood roles in development and differentiation of rodent and human brain(Lauder, 1989; Legrand, 1982–83; Stein et al, 1989a; 1991a,d; Eayrs, 1968; Morreale de Escobar et al, 1984; Garza et al, 1988; Ruiz-Marcos, 1989; Nunez et al, 1989). Hypothyroidism leads to molecular(Stein et al, 1989a,c; 1991a; Nunez et al, 1989; Hendrich et al, 1987), neuroendocrinological(Noguchi et al, 1986, Bakke et al, 1975, Stein et al, 1989b, Porterfield et al, 1981), neuroanatomical(Lauder et al, 1986; Lauder, 1989; Ruiz-Marcos, 1989; Eayrs, 1955; Garza et al, 1988; Morreale de Escobar et al, 1989; Marc et al, 1985; Legrand, 1982–83; Rami et al, 1986b; Narayanan et al, 1985; Marinesco, 1924; Lotmar, 1928; Rosman, 1975), behavioral and neuropsychological(Adams et al, 1989,1991; Anthony et al, 1991; Eayrs, 1968; Davenport et al, 1976; Klein, 1985; Rovet et al, 1987; Rovet, 1989; Man, 1971; Boyages et al, 1988; Pharoah,1984), and neurological abnormalities(Chaouki et al, 1989; Boyages et al, 1988; Delong et al, 1985; Nelson et al, 1986; Macfaul et al; 1978; Stein et al, 1991d, Rochiccioli et al, 1989) in the developing brain. Specifically, disorders of neuronal process growth and connectivity are noted neuroanatomically and motor syndromes involving motor cortex and pyramidal tracts are commonly observed in hypothyroid humans and rodents. These neurological and neuropathological abnormalities may be predicated on abnormalities in the cytoskeletal structures and in their molecular components. The cytoskeleton is a primary target for thyroid hormone in euthyroid and hypothyroid brain.


Thyroid Hormone Cerebral Palsy Thyroid Stimulate Hormone Axonal Transport Corticospinal Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P. M., Stein, S. A., Palnitkar, M., Anthony, A., and Gerrity, L., 1989, Evaluation and Characterization of the hyi/hit Hypothyroid Mouse I: Somatic and Behavioral Studies, Neuroendo., 49: 138–143.CrossRefGoogle Scholar
  2. Adams, P. M. and Stein, S. A., Evaluation and characterization of the hyi/hit mouse III: Abnormalities in Primitive Corticospinal Reflexes and Sensory Behavior, Submitted, 1991.Google Scholar
  3. Adkison, L. R., Taylor, S., and Beamer, W. G., 1989, Mutant gene-induced disorders of structure, function and thyroglobulin synthesis in congenital goitre (cog/cog) in mice, J. Endocrin., 126: 51–58.CrossRefGoogle Scholar
  4. Allpress, S. J., and Pollock, M., 1986, Morphological and functional effects of triiodothyronine on regenerating peripheral nerve, Exp. Neurol., 91: 382–91.PubMedCrossRefGoogle Scholar
  5. Almazan, G., Honegger, P., and Matthieu, J. M., 1975, Triiodothryoinine stimulation of oligodendroglial differentiation and myelination, Dev. Neuro., 7: 45–54.CrossRefGoogle Scholar
  6. Anduze, A. L., and Merritt, J. C., 1980, Optic nerve hypoplasia with hyperthyroidism and third nerve palsy, Ann. Opthalmology, 12: 1170–1173.Google Scholar
  7. Bakke, J. L., Lawrence, N. L., Robinson, S., and Bennett, J., 1975, Endocrine studies of the untreated progeny of thyroidectomized rats, Pediat. Rest, 9: 742–748.CrossRefGoogle Scholar
  8. Beamer, W. G., Eicher, E. M., Maltais, L. J., and Southard, J. L., 1981, Inherited primary hypothyroidism in mice, Science, 212: 61–62.PubMedCrossRefGoogle Scholar
  9. Beamer, W. G., Maltais, L. J., DeBaets, M. H., and Eicher, E. M., 1987, Inherited congenital goiter in mice, Endocrinol., 120: 838–840.CrossRefGoogle Scholar
  10. Beamer, W. G. and Cresswell, L. A., 1982, Defective thyroid ontogenesis in fetal hypothyroid (lj) mice, Anat. Rec., 202: 387–393.PubMedCrossRefGoogle Scholar
  11. Beierwaltes, W. H., 1959, Instituitionalized cretins in the state of Michigan, Michigan Med., 58: 1077–1095.Google Scholar
  12. Benecke, R., 1990, Clumsiness in corticospinal tract lesions, Motor Control, Am. Acad. of Neurol., 47–63.Google Scholar
  13. Benjamin, S., Cambray-Deakin, MA, and Burgoyne, R.D., 1988, Effect of hypothyroidism on the expression of three microtubule-associated proteins (1A, 1B, and 2) in developing rat cerebellum, Neurosci, 27: 931–939.CrossRefGoogle Scholar
  14. Benowitz, L. I. and Routtenberg, A., 1987, A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity, TINS, 10: 527–532.Google Scholar
  15. Bernal, J. and Pekonen, F., 1984, Ontogenesis of the nuclear 3,5,3’-triiodothyronine receptor in the human fetal brain, Endocrinol., 11: 677–679.CrossRefGoogle Scholar
  16. Bradley, D. J., Young, W. S., III, Weinberger, C., 1989, Differential expression of and thyroid hormone receptor genes in rat brain and pituitary, Proc. Natl. Acad. Sci., 86: 1–6.CrossRefGoogle Scholar
  17. Birrell, J., Frost, G. J., and Parkin, J. M., 1987, The development of children with congenital hypothyroidism, Dev. Med. Child Neurol., 25: 512–519.CrossRefGoogle Scholar
  18. Black, M. M. and Lasek, R. J., 1979, Axonal transport of actin: Slow component b is the principal source of actin for the axon, Brain Res., 171: 401–413.PubMedCrossRefGoogle Scholar
  19. Bloom, G. S., Schoenfeld, T. A., and Vallee, R. B., 1984, Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system, J. Cell., Biol., 98: 320–330.CrossRefGoogle Scholar
  20. Bloom, G. S. and Vallee, R. B., 1983, Association of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol., 96: 1523–1531.PubMedCrossRefGoogle Scholar
  21. Bond, J. and Farmer, S., 1983, Regulation of tubulin and actin mRNA production in rat brain: Expression of a new tubulin mRNA with development, Mol. Cell. Biol., 3: 1333–1342.PubMedGoogle Scholar
  22. Boyages, S. C., Halpern, J. P., Maberly, G. F., Eastman, C. J., Morris, J., Collins, J., Jupp, J. J., Chen-en, J., Zheng-Hua, W., and Chuan-Yi, Y., 1988, A comparative study of neurological and myxedematous endemic cretinism in Western China, J. Clin. Endocrin. Metabolism, 67: 1262–1271.CrossRefGoogle Scholar
  23. Boyages, S. C., Collins, J. K., Maberly, G. F., Jupp, J. J., Morris, J., and Eastman, C. J., 1989, Iodine deficiency impairs intellectual and neuromotor development in apparently-normal persons: A study of rural inhabitants of north-central China, Med. J. of Australia, 150: 676–77.Google Scholar
  24. Brady, S. T., 1985, Axonal transport: Methods and applications, in:“Neuromethods I: General Methods,” Boulton, A., Baker, G., eds., Clifton, NJ, Humana Press.Google Scholar
  25. Brady, S. T., 1988, Cytotypic specialization of the neuronal cytoskeleton and the cytomatriac Implications for neuronal growth and regeneration, in: “Cellular and Molecular Aspects of Neural Development and Regeneration,” A. Goria, et al., eds., Springer-Verlag, New York.Google Scholar
  26. Brady, S. T. and Black, M. M., 1986, Axonal transport of microtubule proteins: Cytotypic variation of tubulin and MAPs in neurons, Ann. NY Acad. Sci., 466: 199–217.Google Scholar
  27. Brady, S. T., Lasek, R. J., 1982a, The slow components of axonal transport: Movements, compositions and organization, in: “Axoplasmic Transport,” Weiss, D. G., ed., Berlin, Springer-Verlag.Google Scholar
  28. Burgoyne, R. D., Cambray-Deakin, M. A., Lewis, S. A., Sarkar, S., and Cowan, N. J., 1988, Differential distribution of ß tubulin isotypes in cerebellum, EMBO. J., 7: 2311–2319.Google Scholar
  29. Caviness, V. S., Crandall, J. E., and Edwards, M. A., 1988, The reeler malformation: Implications for neocortical histogenesis, in: “Cerebral Cortex,” A. Peters and E. G. Jones, eds., Plenum Press, New York.Google Scholar
  30. Chaouki, M. L., Maoui, R., and Benmiloud, M., 1987, Comparative study of neurological and myxoedematous cretinism associated with severe iodine deficiency, Clin. Endocrinol., 28: 399–408.Google Scholar
  31. Chaudhury, S., Chatterjee, D., and Sarkar, P. K., 1985, Induction of brain tubulin by triidothyronine: Dual effect of the hormone on the synthesis and turnover of the protein, Brain Res., 339: 191–194.Google Scholar
  32. Christiansen, E. and Melchior, J., 1967, Cerebral palsy: a clinical and neuropathological study, Clin. Dev. Med., 25: 1.Google Scholar
  33. Cleveland, D.W., 1989, Autoregulated control of tubulin synthesis in animal cells, Curr. Opinion in Cell Biol., 1: 10–14.Google Scholar
  34. Clos, J., Legrand, C., and Legrand, J., 1980, Effects of thyroid state on the formation and early morphological development of Bergmann glia in the developing rat cerebellum, Dev. Neurosci., 3: 199–208.Google Scholar
  35. Codaccioni, J. L., Carayon, P., Michel-Bechet, M., Foucault, F., Lefort, G., and Pierron, H., 1980, Congenital hypothyroidism associated with thyrotropin unresponsiveness and thyroid cell membrane alterations, J.Clin. EndocrinoL Metal, 50: 932–937.Google Scholar
  36. Corner, C. P. and Norton, S., 1985, Behavioral consequences of perinatal hypothyroidism in postnatal and adult rats, Pharm. Biochem. Behay., 22: 605–611.Google Scholar
  37. Conel, J.L., “The postnatal development of the human cerebral cortex,” volumes I-VII, 1939, 1941, 1947, 1951, 1955, 1959, 1963, 1967, Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar
  38. Cowan, N. J. and Dudley, L., 1983, Tubulin isotypes and the multigene tubulin families, Intl. Rev Cytl., 85: 147–173.Google Scholar
  39. Crandall, J. E. and Caviness, V. S., 1984, Axon strata of the cerebral wall in embryonic mice, Dev Brain Res., 14: 185–195.CrossRefGoogle Scholar
  40. Crandall, J. E. and Caviness, V. S., 1984, Thalamocortical connections in newborn mice, J. Comp, Neurol., 228: 542–556.Google Scholar
  41. Davenport, J. W., 1976, Perinatal hypothyroidism in rats: Persistent motivational and metabolic effects, Dev. Psychobiol., 9: 67–82.Google Scholar
  42. Davenport, J. and Dorcey, T., 1972, Hypothyroidism: Learning deficits induced in rats by early exposure to thiouracil, Horm. Behay., 3: 97–112.Google Scholar
  43. Davenport, J. W., Gonzalez, L. M., Hennies, R. S., and Hagquist, W. W., 1976, Severity and Timing of Early Thyroid Deficiency as Factors in the Induction of Learning Disorders in Rats, Horm. Behay., 7: 139.Google Scholar
  44. Davidoff, R. A., 1990, The pyramidal tract, Neurology, 40: 332–339.PubMedGoogle Scholar
  45. de Waegh, S. and Brady, S. T., 1990, Axonal transport of a clathrin uncoating ATPase (HSC70): A role for HSC70 in the modulation of coated vesicle assembly in vivo, J. Neurosci. Res, 23: 433–440.Google Scholar
  46. de Waegh, S. and Brady, S. T., 1989b, Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: The trembler as an in vivo model for schwann cell-axon interactions, Neurosci., 10: 1855–1865.Google Scholar
  47. Delange F.M., 1989, Endemic cretinism: An overview, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.Google Scholar
  48. Delong, G. R., 1989, Observations on the neurology of endemic cretinism, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.CrossRefGoogle Scholar
  49. Delong, G. R., Stanbury, J.B., and Fierro-Benitez, R., 1985, Neurological signs in congenital iodine-deficiency disorder (endemic cretinism), Dev. Med. Child Neurol., 27:317-.Google Scholar
  50. Dememes, D., Dechesne, C., LeGrand, C., and Sans, A., 1986, Effects of hypothyroidism on postnatal development in the peripheral vestibular system, Dev. Brain Res., 25: 147–152.Google Scholar
  51. Demeyer, W., 1967, Ontogenesis of the rat corticospinal tract, Arch. Neurol., 16:203–211Google Scholar
  52. Devries, J.I.P., Visser, G.HA., and Prechtl, H.F.R., 1982, The emergence of fetal behavior I. Quantitative aspects, Early Hum. Devel., 7: 301–322.Google Scholar
  53. Diamond, D.J. and Goodman, H.M., 1985, Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine transcriptional rate and mRNA stability changes in pituitary tumor cells, J. Molec. Biol., 181: 41–62, 1985.Google Scholar
  54. Donatelle, J. M., 1977, Growth of the corticospinal tract and the development of placing reactions in the postnatal rat, J. Comp. Neur., 175: 207–232.Google Scholar
  55. Drubin, D., Kobayashi, S., Kellogg, D., and Kirschner, M., 1988, Regulation of microtubule protein levels during cellular morphogenesis in nerve growth factor-treated PC12 cells, J. Cell. Biol., 106: 1583–1591.Google Scholar
  56. Drubin, D. G., Feinstein, S. C., Shooter, E. M., and Kirschner, M. W., 1985, Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors, J. Cell Biol., 101: 1799–1807.PubMedCrossRefGoogle Scholar
  57. Dumont, J. E„ Vassart, G., and Refetoff, S., 1989, Thyroid disorders, in: “Metabolic Basis of Inherited Diseases,” 6th ed., Scriver, C. R., Beaudet, A. L, Sly, W. S., Valle, D., eds., McGraw Hill, New York.Google Scholar
  58. Dussault, J. H., Action of thyroid hormones on brain development, in: “Research in Congenital Hypothyroidism,” F. Delange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York, 95–102.Google Scholar
  59. Dussault, J. H., Glorieux, J., Letarte, J., Guyda, H., and Morissette, J., 1983, The mental development at 3 years of age of hypothyroid infants detected by the Quebec Screening program, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., M. Dekker, Inc., New York.Google Scholar
  60. Dyck P.J., Lambert, E.H., 1970, Polyneuropathy associated with hypothyroidism, J Neuropath Exp Neurol, 24: 631–658.CrossRefGoogle Scholar
  61. Eayrs, J.T., 1968. Developmental Relationships Between Brain and Thyroid, in: “Endocrinol. and Human Behavior,” R. P. Michael, ed., Oxford University Press, New York.Google Scholar
  62. Eayrs, J.T., 1955, The cerebral cortex of normal and hypothyroid rats, Acta Anat., 25: 160–1832.PubMedCrossRefGoogle Scholar
  63. Eayrs, J. T. and Lishman, W. A., 1955, The maturation of behavior in hypothyroidism and starvation, Br. J. Animal Behay., 3: 17–24.Google Scholar
  64. Faivre C., Legrand C., and Rabie A., 1984, In purkinje cell dendrites of the young rat, thyroid hormone controls the resistance of microtubules to fixation at low temperature, Int. J. Dev. Neurosci., 2: 427–436.Google Scholar
  65. Faivre, C., Legrand, C., and Rabie, A., 1983, Effects of thyroid deficiency and corrective effects of thyroxine on microtubules and mitochondria in cerebellar purkinje cell dendrites of developing rats, Dev. Brain. Res., 3: 21–30.Google Scholar
  66. Farmer, S., Robinson, G., Mbangkollo, D., Bond, J., Knight, G., Fenton, M., and Berkowitz, E., 1986, Differential expression of the ß tubulin multigene family during rat brain development, Ann. NY Acad. of Sci., 466: 41–50.Google Scholar
  67. Fernyhough, P., Mill, J. F., Roberts, J. L., and Ishii, D. N., 1989, Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation, Mol. Brain Res., 6: 109–120.Google Scholar
  68. Fierro-Benitez, R., Cazar, R., Sandoval, H., Fierro-Renoy F., et al, Early correction of iodine deficiency and late effects on psychomotor capabilities and migration in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.Google Scholar
  69. Fisher, D. A. and Foley, B. L., 1989, Early treatment of congenital hypothyroidism, Pediatrics, 83: 785–789.PubMedGoogle Scholar
  70. Fisher, D. A. and Klein, A. H., 1981, Thyroid development and disorders of thyroid function in the newborn, NEJM, 304: 702–712.PubMedCrossRefGoogle Scholar
  71. Fisher, A. A., 1989, Development of fetal thyroid system control, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.Google Scholar
  72. Fox, S. R. and Pfaff, D., 1987, Differential expression within neurons and glia of mRNA encoding a putative thyroid hormone receptQr(cErbA1), Soc. Neurosci. Abstr., 13 (1): 376.Google Scholar
  73. Freeman, J. M. and Nelson, K. B., 1988, Intrapartum asphyxia and cerebral palsy, Pediatrics, 82: 240–249.PubMedGoogle Scholar
  74. Freund, H. J., 1987, Differential effects of cortical lesions in humans, in: “Motor Areas of the Cerebral Cortex,” R. Porter and C. G. Phillips, eds., A. Wiley-Interscience Publication, New York.Google Scholar
  75. Garcia, C. A. and Fleming, R. H., 1977, Reversible corticospinal tract disease due to hyperthyroidism, Arch, Neurol., 34: 647–648.Google Scholar
  76. Garner, J. A. and Lasek, R. J., 1981, Clathrin is axonally transported as part of slow component b: The microfilament complex, J. Cell Biol., 88: 172–178.Google Scholar
  77. Garza, R., Dussault, J. H., and Puymirat, J., 1988, Influence of triiodothyronine on the morphological and biochemical development of fetal brain acetylcholinesterase-postive neurons cultured in a chemically defined medium, Dev. Br, Res., 43: 287–297.Google Scholar
  78. Gerard, C. M., Lefort, A., Christophe, D., Libert, F., Van Sande, J., Dumont, J. E., and Vassart, G., 1989, Control of thyroperoxidase and thyroglobulin transcription by cAMP: Evidence for distinct regulatory mechanisms, Mol. Endocrinol., 3: 2110–2118.Google Scholar
  79. Gilman, A. G., 1989, G proteins and regulation of adenylyl cyclase, JAMA, 262: 1819–1825.PubMedCrossRefGoogle Scholar
  80. Giroud, M., Enenbaum, D., D’Athis, P., Dumas, R., and Nivelon, J. L., 1988, Neurophysiological study of peripheral nerves in newborn infants with congenital hypothyroidism. Value in the surveillance of replacement therapy, Arch. Francaises De Pediatric, 45: 175–79.Google Scholar
  81. Glorieux, J., 1989, Mental development of patients with congenital hypothyroidism detected by screening.(Quebec experience), in: “Research in Congenital Hypothyroidism,” DeLange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York.Google Scholar
  82. Gonzales, L. W. and Geel, S. E., 1978, Quantitation and characterization of brain tubulin (colchicine-binding activity) in developing hypothyroid rats, J. Neurochem., 30: 237–245.PubMedCrossRefGoogle Scholar
  83. Gottesfeld, Z., Garcia, C. J., and Chronister, R. B., 1987, Perinatal, not adult, hypothyroidism suppresses dopaminergic axon sprouting in the deafferented olfactory tubercle of adult rat, J. Neurosci. Res., 18: 568–73.Google Scholar
  84. Gould, E., Frankfurth, M., Westlind-Danielsson, A., and McEwen, B. D., 1990, Developing forebrain astrocytes are sensitive to thyroid hormone, Glia, 3 (4): 283–92.PubMedCrossRefGoogle Scholar
  85. Gross, H., Jellinger, K., Kaltenback, E., and Rett, E., 1968, Infantile cerebral disorders: clinical-neuropathological correlations to elucidate the aetiological factors, J. Neurol. Sci., 7: 551.Google Scholar
  86. Hadjzadeh, M., Sinha, A.K., Pickard, M.R., and Ekins, R.P., 1990, Effect of maternal hypothyroxinaemia in the rat on brain biochemistry in adult progeny, J. Neurochem., In Press.Google Scholar
  87. Havercroft, J. C. and Cleveland, D. W., 1984, Programmed expression of ß-tubulin genes during development and differentiation of the chicken, J. Cell Biol., 99: 1927–1935.PubMedCrossRefGoogle Scholar
  88. Hammerschlag, R. and Brady, S. T., 1989, Axonal transport and the neuronal cytoskeleton, in: “Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 4th Ed.,” Siegel, G. J., et al., eds., New York: Raven Press.Google Scholar
  89. Hargreaves, A., Yusta, B., Aranda, A., Avila, J., and Pascual, A., 1988, Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP1B in cultured cells of neuronal origin, Dev. Brain. Res., 38: 141–148.Google Scholar
  90. Hendrich, T. E., Jackson, W. J., and Porterfield, S. P., 1984, Behavioral testing of progenies of Tx(Hypothyroid) and growth hormone treated Tx rats: An animal model for mental retardation, Neuroendo., 438: 429–437.Google Scholar
  91. Hendrich, C. E., Ocasio-Torres, W., Berdecia-Rodriquez, W., and Porterfield, S. P., 1987, Brain and liver ribosomal protein synthesis and profiles in hypothyroid mothers and their progenies, Am. Thyroid Assoc., Abstract #106.Google Scholar
  92. Hoffman, P. N., 1989, Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons, J. Neurosci., 9 (3): 893–897.PubMedGoogle Scholar
  93. Hoffman, P. N. and Cleveland, D. W., 1988, Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: Induction of a specific ß-tubulin isotype, Proc. Natl. Acad. Sci. USA, 85: 4530–4533.Google Scholar
  94. Hoffman, P. N. and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol„ 66: 351–366.Google Scholar
  95. Hoffman, P. N., Thompson, G., Griffin, J., and Price, D., 1985, Changes in neurofilament transport coincide temporally with alteration in the caliber of axons in regenerating motor fibers, J. Cell Biol., 101: 1332–1340.PubMedCrossRefGoogle Scholar
  96. Hoskins, S. G. and Grobstein, P., 1983, Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine, Nature, 307: 730–733.CrossRefGoogle Scholar
  97. Hoyle, H. D. and Raff, E. C., 1990, Two drosophila beta tubulin isoforms are not functionally equivalent, J. Cell Biol., 111: 1009–1026.PubMedCrossRefGoogle Scholar
  98. Hulse, A., 1987, Congenital hypothyroidism and neurological development, J. Child Psychol. Psychia., 24: 629–635.Google Scholar
  99. Jeantet, C. and Gros, F., 1981, One tubulin subunit accumulates during neurite outgrowth in mouse neuroblastoma cells, Biochem. Biophys. Res. Commun„ 103: 1035–1043.Google Scholar
  100. Jia-Liu, L., Zhong-Jie, Z., Zhon-Fu, S., Jia-Ziu, Z., Yu-Bin, T., and Bin-Zhon, C., 1989, Influence of iodine deficiency of human fetal thyroid gland and brain, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.Google Scholar
  101. Jianquan, L., Xin, W., Yuquin, Y., Kewei, W., Dakai, Q., Zhenfu, X., and Jim, W., 1985, The effects on fetal brain development in the rat of a severely iodine deficient diet derived from an endemic area: observations on the first generation, Neuropath. Appl. Neurobiol., 12: 261–276.Google Scholar
  102. Job, J. C., Canlorbe, P., Thomassin, N., and Vassal, J., 1969, L’hypothyroidie infantile a debut precoce avec glande en place, fixation fiable de radioiode et defaut de reponse a la thyrostimuline, Ann. Endocrinol., 30: 696–701.Google Scholar
  103. Jones, E. C., 1981, Development of connectivity in the cerebral cortex, in: “Studies in Developmental Neurobiology,” W.M. Cowan, eds., Oxford University Press, New York.Google Scholar
  104. Johanson, I. B., Turkewitz, G., and Hamburgh, M., 1980, Development of home orientation in hypothyroid and hyperthyroid rat pups, Devl. Psychobiol., 13: 331–342.Google Scholar
  105. Jones, E. G., Schreyer, D. J., and Wise, S. P., 1982, Growth and maturation of the rat corticospinal tract, Prog. Br. Res., 57: 361–379.Google Scholar
  106. Ketelbant-Balasse, P., Glinoer, D., and Neve, P., 1975, Ultrastructural aspects of the thyroid in a case of human congenital goitre with cretinism, Path. Europ., 10: 155–165.Google Scholar
  107. Klein, R.Z., 1985, Infantile Hypothyroidism then and now the results of neonatal screening, Curr. Prob. Ped., 15: 1–58.Google Scholar
  108. Kristt, D. A., 1978, Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week, Brain Res, 150: 467–486.Google Scholar
  109. Kudrjacev, T., 1978, Neurologic complications of thyroid dysfunction, Adv. Neurol., 19: 619–636.Google Scholar
  110. Kuypers, H. G. F. M., 1985, The anatomical and functional organization of the motor system, in: “Scientific Basis of Clinical Neurology,” M. Swash and C. Kennard, eds., Churchill Livingstone, New York.Google Scholar
  111. Larsen, P. R., 1989, Maternal thyroxine and congenital hypothroidism, NEJM, 321: 44–46.PubMedCrossRefGoogle Scholar
  112. Lasek, R. J., 1988, Studying the intrinsic determinants of neuronal form and function, in: Intrinsic Determinants of Neuronal Form and Function, R. J. Lasek, ed., A. R. Liss, Inc., New York.Google Scholar
  113. Lasek, R. J., Garner, J. A., and Brady, S. T., 1984, Axonal transport of the cytoplasmic matrix, J. Cell Biol., 99: 212s - 221s.PubMedCrossRefGoogle Scholar
  114. Lasek, R. J. and Brady, S. T., 1982, The structural hypothesis of axonal transport: Two classes of moving elements, in: “Axoplasmic Transport,” Weiss, D. G., ed., Springer-Verlag, Berlin.Google Scholar
  115. Lauder J.M. and Krebs, H., 1986, Do neurotransmitters, neurohumors, and hormones specify critical periods? in: “Developmental Neuropsychobiology,” W. T. Greenough, J. M. Jurask, eds., Academic Press, New York.Google Scholar
  116. Lauder, J.M., 1989. Thyroid influences on the developing cerebellum and hippocampus of the rat, in: “Iodine and the Brain,” Plenum Press, New York, G. R. DeLong, J. Robbins, and P. G. Condliffe, eds., New York.Google Scholar
  117. Lee, M. K., Tuttle, J. B., Rebhun, L. K., Cleveland, D. W., and Frankfurter, Anthony, 1990, The expression and posttranslational modification of a neuron-specific ß-tubulin isotype during chick embryogenesis, Cell Motility and the Cytoskeleton, 17: 118–132.PubMedCrossRefGoogle Scholar
  118. Lee, V., L. Otvos, M. Carden, M. Hollosi, B. Dietzschold and R I azzarini,1988, Identification of the major multiphosphorylation site in mammalian neurofilaments, Proc Natl. Acad. Sci. USA, 85: 1998–2002.Google Scholar
  119. Legrand, J., 1982–1983, Hormones thyroidiennes et maturation du systeme nerveux, J. Physiol., Paris 78: 603–652.Google Scholar
  120. Lemire, R. J., Loeser, J. D., Leech, R. W., and Alvord, E. C., 1975, Normal and abnormal development of the human nervous system, Harper Row, New York.Google Scholar
  121. Letarte, J. and Franchi, S. L., 1983, Clinical features of congenital hypothyroidism, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., M. Dekker, New York.Google Scholar
  122. Lewis, SA., Sherline, P., and Cowan, N.J., 1986, A cloned cDNA encoding MAP1 detects a single copy gene in mouse and a grain-abundant RNA whose level decreases during development, J. Cell Biol., 102: 2107–2114.Google Scholar
  123. Lewis, S. A., Lee, M. G., and Cowan, N. J., 1984, Five mouse tubulin isotypes and their regulated expression during development, J. Cell Biol., 101: 852–861.CrossRefGoogle Scholar
  124. Lewis, S. A. and Cowan, N. J., 1988, Complex regulation and functional versatility of mammalian a-and /3- tubulin isotypes during the differentiation of testis and muscle cells, J. Cell Biol., 106: 2023–2033.PubMedCrossRefGoogle Scholar
  125. Lissitzky, S., Torresani, J., Burrow, G. N., Bouchilloux, S., and Chabaud, O., 1975b, Defective thyroglobulin export as a cause of congenital goitre, Clin. Endocrinol., 4: 363–392.Google Scholar
  126. Littauer, U. Z., Giveon, D., Thierauf, M., Ginzburg, I., and Ponsting, 1. H., 1986, Common and distinct tubulin binding sites for microtubule-associated proteins, Proc. Natl. Acad. Sci., 83: 7162–7166.Google Scholar
  127. Lotmar, F., 1929, Histopathologische befunde in gehirenen von kongenitalem myxodem thyreoaplasie und kachexia thyreopriva, Atschr, Neurol Psychiat., 119: 491–513.Google Scholar
  128. Lotmar, F., 1928, Histopathologische befunde in gehirnen von kongenitalem Myxodem ( Thyreoaplasie ), Z.f.d.g. Neur. u. Psych., 119: 492–513.Google Scholar
  129. Lowe, T. W. and Cunningham, F. G., 1990, Thyroid Disease in Pregnancy, in: “Williams Obstetrics,” Supplement #9, 18th ed., Cunningham, F.G., McDonald, P., Gant, N., eds., Appleton-Lange, East Norwalk, Conn., 1–15.Google Scholar
  130. Maccioni, R. B., Rivas, C. I., and Vera, J. C., 1988, Differential interaction of synthetic peptides from the carboxyl-terminal regulatory domain of tubulin with microtubule-associated proteins, EMBO J., 7: 1957–1963.PubMedGoogle Scholar
  131. Macfaul, R., Borner, S., Brett, E. M., and Grant, D. B., 1978, Neurological abnormalities in patients treated for hypothyroidism from early life, Arch. Dis. Child., 53: 611–619.Google Scholar
  132. Malamud, N., Itabashi, H. H., Castor, J., and Messinger, H. B., 1964, An etiologic and diagnostic study of cerebral palsy, J. Pediatr., 65: 270–293.PubMedCrossRefGoogle Scholar
  133. Man, E. B., Holden, R. H., and Jones, W. S., Thyroid function in human pregnancy, Am. J. Obstet., Gyn., 109: 12–18, 1971.Google Scholar
  134. Mandelkow, E. and Mandelkow, E. M., 1989, Microtubular structure and polymerization, Curr. Opin. Cell Biol., 1: 5–9.Google Scholar
  135. Marc, C. and Rabie, A., 1985, Microtubules and neurofilaments of the sciatic nerve fibers of the developing rat: Effects of thyroid deficiency, Int. J. Dey. Neurosci., 3: 353–358.Google Scholar
  136. Marc, C., Clavel, M., and Rabie, A., 1986, Non-phosphorylated and phosphorylated neurofilaments in the cerebellum of the rat: An immunocytochemical study using monoclonal antibodies, development in normal and thyroid-deficient animals, Dev. Brain Res., 26: 249–260.Google Scholar
  137. Marin-Padilla, M., 1970, Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers, Brain Res., 23: 167–183.Google Scholar
  138. Matus, A., 1988, Microtubule-associated proteins: Their potential role in determining neuronal morphology, Ann. Rev. Neurosci., 11: 29–44.Google Scholar
  139. Marin-Padilla, M., 1988, Early ontogenesis of the human cerebral cortex, in: “Cerebral Corte;” A. Peters and E. G. Jones, eds, Plenum Press, New York.Google Scholar
  140. Marinesco, M.G., 1924, Contribution a l’etude des lesions du myxoedeme congenital, Encephale, 19: 265–293.Google Scholar
  141. Mayerhofer, A., Amador, A. G., Beamer, W. G., and Bartke, A., 1988, Ultrastructural aspects of the goiter in Log/mg mice, J. of Heredity, 79: 200–3.Google Scholar
  142. Meller, K., Breipohl, W., and Glees, P., 1968, Synaptic organization of the molecular and outer granular layer in the motor cortex in the white-mouse during postnatal development: A golgi and electron-microscopical study, Z. Zellforsch. Mikrosk. Anat. Abt. Histochem., 92: 217–231.Google Scholar
  143. Medeiros-Neto, G. A., Knobel, M., Bronstein, M. D., Simonetti, J., Filho, F. F., and Mattar, E., 1979, Impaired cyclic-AMP response to thyrotropin in congenital hypothyroidism with thyroglobulin deficiency, Acta. Endocrinol., 92: 62.Google Scholar
  144. Miller, M. W., 1988, Development of projection and local circuit neurons in neocortex, in: “Development and Maturation of the Cerebral Cortex, Cerebral Cortex,” Vol. 7, A. Peters and E. G. Jones, eds., Plenum Press, New York.Google Scholar
  145. Miller, M. W., 1987a, Effect of prenatal exposure to alcohol on the distribution and time of origin of corticospinal neurons in the rat, J. Comp. Neurol, 257: 372–382.Google Scholar
  146. Miller, F. D., Naus, C. C. G., Durand, M., Bloom, F. E., and Milner, R. J., 1987b, Isotypes of a-tubulin are differentially regulated during neuronal maturation, J. Cell Biol., 105: 3065–3073.PubMedCrossRefGoogle Scholar
  147. Mills, S. A. and Savage, D. D., 1988, Evidence of hypothyroidism in the genetically epilepsy-prone rat, Epilepsy Research, 2: 102–10.PubMedCrossRefGoogle Scholar
  148. Mitchison, T. and Kirschner, M., 1988, Cytoskeletal dynamics and nerve growth, Neuron, 1: 761–772.PubMedCrossRefGoogle Scholar
  149. Morreale de Escobar, G. M. and Escobar del Rey, F., 1983. Thyroid hormone and the developing brain, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., Academic Press, New York.Google Scholar
  150. Morreale de Escobar, G. M., Pastor, R., Obregon, M. J., and Del Ray, F. E., 1985, Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function, Endocrinol., 117: 1890.CrossRefGoogle Scholar
  151. Morreale de Escobar, G., Ruiz de Ona, C., Obregon, M.J., and Escobar del Rey, F., 1989, Models of fetal iodine deficiency, in: “Iodine and the Brain,” G.R. DeLong, J. Robbins, and P.G. Conliffe, eds., Plenum Press, New York.Google Scholar
  152. Morris, R. G. M. Garrud, P., Rawlines, J. N. P., and O’Keefe J., 1982, Place navigation is impaired in rats with hippocampal lesions, Nature, 297: 681–683.Google Scholar
  153. Narayan, P., Towle, H. C., 1985, Stabilization of a specific nuclear mRNA precursor by thyroid hormone, Mol. Cell. Biol., 5: 2642–2646.Google Scholar
  154. Narayanan, C. H., Narayanan, Y., and Browne, R. C., 1982, Effects of induced thyroid deficiency on the development of suckling behavior in rats, Physiol. Behay., 29: 361–370.Google Scholar
  155. Nelson, K. and Ellenberg, J., 1986, Antecedents of cerebral palsy: Multivariate analysis of risk, NEJM, 315: 81–86.Google Scholar
  156. Narayanan, C. H. and Narayanan, Y., 1985, Cell formation in the motor nucleus and mesencephalic nucleus of the trigeminal nerve of rats made hypothyroid by propylthiouracil, Exp. Brain Res., 59: 257–266.Google Scholar
  157. New England Congenital Hypothyroidism Collaborative Group, 1990, Elementary school performance of children with congenital hypothyroidism, J. Ped., 116: 27–32.CrossRefGoogle Scholar
  158. Noguchi, T., 1988, Brain development in dwarf mice, Progr. in Neurobiol., 31: 149–170.Google Scholar
  159. Noguchi, T., Kudo, M., Sugisaki, T., and Satoh, I., 1986, An immunocytochemical and electron microscopic study of the hyt mouse anterior pituitary gland, J. Endocrinol„ 109: 163–168.PubMedCrossRefGoogle Scholar
  160. Noguchi, T. and Sugisaki, T., 1984, Hypomyelination in the cerebrum of the congenitally hypothyroid mouse (hit/hyt), J. Neurochem., 42: 891–893.PubMedCrossRefGoogle Scholar
  161. Nunez, J., 1988, Immature and mature variants of MAP2 and Tau proteins and neuronal plasticity, TINS, 11: 477–479.PubMedGoogle Scholar
  162. Nunez, J., Couchie, D., and Brion, J. P., 1989, Microtubule assembly: Regulation by thyroid hormones, in: “Iodine and the Brain,” G. R. Delong, J. Robbins, P. G. Condliffe, eds., Plenum Press, New York.Google Scholar
  163. Okado, N., 1980, Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus, J. Comp. Neurol., 191: 495–513.Google Scholar
  164. Paschal, B. M., Obar, R. A., and Vallee, R. B., 1989, Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin, Nature, 342: 569–572.PubMedCrossRefGoogle Scholar
  165. Pharoah, P. O. D., Connolly, K. J., Ekins, R. P., and Harding, A. G., 1984, Maternal thyroid hormone levels in pregnancy and the subsequent cognitive and motor performance of the children, Clin. Endocrin., 21: 265–270.Google Scholar
  166. Pinto Lord, M. C. and Caviness, V. S., 1979, Determinants of cell shape and orientation: a comparative golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice, J. Comp. Neuro., 187: 49–70.Google Scholar
  167. Porter, R., 1985, The cerebral cortex and control of movement performance, in: “Scientific Basis of Clinical Neurology,” M. Swash and C. Kennard, eds., Churchill Livingstone, New York.Google Scholar
  168. Porterfield, S. P. and Hendrich, C. E., 1981, Alterations of serum thyroxine, triiodothyronine, and thyrotropin in the progeny of hypothyroid rats, Endocrinol., 108: 1060–1063.CrossRefGoogle Scholar
  169. Purpura, D. P., 1975, Dendritic Differentiation in human cerebral cortex: normal and aberrant developmental patterns, in: “Advances in Neurology,” G. W. Kreutzberg, ed., Raven Press, New York.Google Scholar
  170. Puymirat, J., Barret, A., Picart, R., Vigny, A., Loudes, C., Faivre-Bauman, A., and TixierVidal, A., 1983, Triiodothyronine enhances the morphological maturation of dopaminergic neurons from fetal mouse hypothalamus cultured in serum-free medium, Neurosci., 10: 801–810.CrossRefGoogle Scholar
  171. Rabie, A., Patel, A., Clavel, M., and Legrand, J., 1979, Effect of thyroid deficiency on the growth of the hippocampus in the rat, Dev. Neurosci., 2: 183–194.Google Scholar
  172. Rami, A., Patel, A., and Rabie, A., 1986a, Thyroid hormone and development of the rat hippocampus: Cell acquisition in the dentate gyrus, Neurosci., 19: 1207–1216.Google Scholar
  173. Rami, A., Patel, A. J., and Rabie, A., 1986b, Thyroid hormone and development of the rat hippocampus: Morphological alterations in granule and pyramidal cells, Neurosci. 4: 1217–1226.Google Scholar
  174. Rasool CG, Bradley WG, Reichlin S, Reduced axoplasmic somatostatin transport in hypothyroid rats, J Neurochem, 45: 973–976.Google Scholar
  175. Rastogi, R. B. and Singhal, R. L., 1976, Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain, J. Pharmacol. Exp. Ther., 198: 609–618.Google Scholar
  176. Regard, E., Taurog, A., and Nakashimas, T., 1978, Plasma thyroxine and triiodothyronine levels in spontaneously metamorphosing rana catesbeiana tadpoles and in adult anuran amphibia, Endocrinol., 102: 674–683.CrossRefGoogle Scholar
  177. Rice, F.L., 1975, The development of the primary somatosensory cortex in the mouse: 1) A nissl study of the ontogenesis of the barrels and the barrel field. 2 ) A quantitative autoradiographic study of the time of origin and pattern of migration of neuroblaste on area SI. (PH.D. Dissertation) The Johns Hopkins University) University Microfilms, Ann Arbor.Google Scholar
  178. Ricketts, M.H., Simons M.J., Parma J., Mercken, L., Dong O., Vassart G., 1987, A non-sense mutation causes hereditary goiter in the afrikander cattle and unmaks alternative splicing of thyroglobulin transcripts, PNAS, 84: 3181–3184.PubMedCrossRefGoogle Scholar
  179. Rochiccioli, P., Alexandre, F., and Roge, B., 1989, Neurological development in congenital hypothyroidism, in: Research in: “Congenital Hypothyroidism,” F. DeLange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York.Google Scholar
  180. Roland, P. E., 1987, Metabolic mapping of sensorimotor integration in the human brain, in: “Motor Areas of the Cerebral Cortex,” R. Porter and C. G. Phillips, eds., A Wiley-Interscience Publication, New York.Google Scholar
  181. Rosman, N.P., 1975, Neurological and muscular aspects of hypothyroidism in childhood, in: “The Pediatric Clinics of North America,” A. L. Prensky, ed., Saunders, Philadelphia.Google Scholar
  182. Ross, E. M., 1989, Signal sorting and amplification through G protein-coupled receptors, Neuron, 3: 141–152.PubMedCrossRefGoogle Scholar
  183. Rovet, J. F., Westbrook, D. L., and Ehrlich, R. M., 1984, Neonatal thyroid deficiency: Early temperamental and cognitive characteristics, J. Am. Acad. of Child Psychi., 23: 10–22.Google Scholar
  184. Rovet, J., Glorieus, J., and Heyerdahl, S., 1987, Summary of research findings on the psychological follow-up of CH children identified by newborn screening, “Advances in Neonatal Screening, Proceedings of the Sixth International Newborn Screening Symposium,” B. Therrell ed., Elsevier Press, Amsterdam.Google Scholar
  185. Rovet, J., Ehrlich, R., and Sorbara, D., 1987, Intellectual outcome in children with fetal hypothyroidism, J. Ped., 110: 700–704.CrossRefGoogle Scholar
  186. Rovet, J. F., 1989, Congenital Hypothyroidism: Intellectual and neuropsychological functioning, in: “Psychoneuroendocrinology, Brain, Behavior, and Hormonal Interactions,” C. Holmes, ed., Springer-Verlag, New York.Google Scholar
  187. Rudy, J. W. and Stadler-Morris S., Albert P., 1987, Ontogeny of spatial navigation behaviors in the rat: dissociation of “proximal” and “distal’-cue based behaviors, Behay. Neurosci., 101: 62–73.Google Scholar
  188. Ruiz-Marcos, A. 1989, Quantitative studies of the effects of hypothyroidism on the development of the cerebral cortex, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Condliffe, eds., Plenum Press, New York.Google Scholar
  189. Ruiz-Marcos, A., Salas, J., Sanchez-Toscano, F., Escobar del Rey, F., and Morreale de Escobar, G., 1983, Effects of neonatal and adult onset hypothyroidism on pyramidal cells of the rat auditory cortex, Dev. Brain Res., 9: 205–213.Google Scholar
  190. Samuels, H. H., Forman, B. M., Horowitz, Z. D, and Ye, Z-S, 1989, Regulation of gene expression by thyroid hormone, Ann. Rev. Physiol., 51: 623–639.Google Scholar
  191. Sarafian T. and Verity, A.M., 1986, Influence of thyroid hormones on rat cerebellar cell aggregation and survival in culture, Dev. Brain Res., 26: 261–270.Google Scholar
  192. Sarlieve, L. L., Bouchon, R., Koehl, C., and Neskovic, N. M., 1983, Cerebroside and sulfatide biosynthesis in the brain of snell dwarf mouse: effects of thyroxine and growth hormone in the early postnatal period, J. Neurochem., 40: 1058–1062.PubMedCrossRefGoogle Scholar
  193. Schapiro, S., Salas, M., and Vukovich, K., 1970, Hormonal effects on ontogeny of swimming ability in the rat: Assessment of central nervous system development, Science, 168: 147–150.Google Scholar
  194. Schalock, R. L., Brown, W. J., and Smith, R. L., 1979, Long-term effects of propylthiouracilinduced neonatal hypothyroidism, Exper. Psychobio., 12: 187–199.Google Scholar
  195. Schreyer, D. J. and Jones, E. G., 1982, Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats, Neurosci., 7: 1837–53.CrossRefGoogle Scholar
  196. Serrano, L., Montejo de Garcini, E., Hernandez, M. A., and Avila, J., 1985, Localization of the tubulin binding site for tau protein, Eur. J. Biochem., 153: 595–600.Google Scholar
  197. Shanklin, D. R. and Stein, S. A., 1988, The Ultrastructural Component Phasing of Developing Fetal and Early Neonatal Mouse Thyroid Cells, FASEB J., 2:A394, #571.Google Scholar
  198. Shanklin, D. R., Stein, S. A., et al., 1991, Pathological studies of fetal thyroid development, in: “Advances in Perinatal Thyroidology,” B. Bercu, and D. Shulman, eds., Plenum Press, New York.Google Scholar
  199. Shoukimas, G. M. and Hinds, J. W., 1978, The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis, J. Comp. Neur., 179: 795–830.Google Scholar
  200. Sidman, R. L., and Rakic, P., 1982, Development of the human central nervous system, in: “Histology and Histopathology of the Nervous System,” W. Haymaker and R. D. Adams, eds., C.C. Thomas, Springfield, Illinois.Google Scholar
  201. Siegrist-Kaiser, Ca. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M., Leonard, J. L., 1990, Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone, J. of Bio. Chem., 265: 5296–302.Google Scholar
  202. Smith, S. J., 1988, Neuronal Cytomechanics: The actin based motility of growth cones, Science, 242: 708–715.Google Scholar
  203. Stanbury, J. B., Rochmans, P., Buhler, U. K., Ochi, Y., 1968, Congenital hypothyroidism with impaired thyroid response to thyrotropin, NEJM, 279: 1127–1138.CrossRefGoogle Scholar
  204. Stein, S. A., 1985, Thyroid hormone control of gene expression in Spraque-Dawley rat brain and liver, Ann. Neuro., 18: 385.Google Scholar
  205. Stein, S. A., 1988, 9A6 mRNA, a mouse and rat thyroid regulated brain mRNA: Sequence analysis and in situ hybridization, Soc. for Neuro. Abst., Vol. 14, Part 2.Google Scholar
  206. Stein, S. A., Adams, P. M., Shanklin, D. R., Mihailoff, G. A., Palnitkar, M., 1989a, Thyroid hormone regulation of specific mRNAs in developing brain, in: “Iodine and the Brain,” G. R. Delong, J. Robbins, P. G. Condliffe, eds., New York, Plenum Press.Google Scholar
  207. Stein, S. A., Shanklin, D. R., Krulich, L., Roth, M. G., Chubb, C. M., Adams, P. M., 1989b, Evaluation and characterization of the 113//lis hypothyroid mouse II. Abnormalities of TSH and the thyroid gland, Neuroendocrin., 49: 509–519.Google Scholar
  208. Stein, S. A., Bloom, G. S., Mihailoff, G. A., Adams, P. M., and Shanklin, D. R., 1989c, Thyroid hormone effects on microtubular composition in developing cerebral cortex, Soc. Neurosci. Abst., 15 (1): 95.Google Scholar
  209. Stein, S. A., Kirkpatrick, L., Shanklin, D. R., Adams, P. M., and Brady, S., 1991a, Hypothyroidism reduces the rate of slow component A(SCa) axonal transport and of total tubulin protein in the hjt/ham+ mouse optic nerve, J. Neurosci. Res., 28: 121–133.Google Scholar
  210. Stein, S. A., Zakarija, M., MacKenzie, J. M., and Shanklin, D. R., 1991b, The site of the molecular defect in the thyroid gland of the]íßt/1j mouse: Abnormalities in the TSH receptor-G protein adenylyl cyclase complex, THYROID, In Press.Google Scholar
  211. Stein, S. A., Bloom, G. S., Shanklin, D. R., and Adams, P. M., 1991c, The effect of thyroid hormone on microtubular composition in developing mouse cerebral cortex, Submitted for publication.Google Scholar
  212. Stein, S. A., et al., 1991d, The role of thyroid hormone in adult and developing brain, in: “Molecular Genetics of Neurological Disease,” R. N. Rosenberg and S. Prusiner, eds., Churchill-Livingstone.Google Scholar
  213. Stein, SA., Kirkpatrick, L., Adams, P.M., Shanklin, D.R., and Brady, S.T., 1991e, Specific proteins of slow component b(SCb) axonal transport are slowed in the hypothyroid hit/hit mouse optic nerve, Submitted.Google Scholar
  214. Strait, KA.,, Schwartz, H.L., Perez-Castillo, A.M.,and Oppenheimer, J.H., 1990, Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats, J. Biol. Chem., 265: 10514–10521.Google Scholar
  215. Strupp, B. J. and Levitsky, D. A., 1983, Early brain insult and cognition: A comparison of malnutrition and hypothyroidism, Dey. Psych., 16: 535–40.Google Scholar
  216. Sturrock, R. R., 1974, Histogenesis of the anterior limb of the anterior commissure of the mouse brain, I. A quantitative study of changes in the glial population with age, II. A quantitative study of pre and postnatal mitosis, J. Anat., 117: 17–35.Google Scholar
  217. Sullivan, K. F., 1988, Structure and utilization of tubulin isotypes, Ann. Rev. Cell Biol., 4: 687–716.PubMedCrossRefGoogle Scholar
  218. Sutherland, R. J. and Rudy, J. W., 1988, Place learning in the Morris place navigation task is impaired by damage to the hippocampal formation even if the temporal demands are reduced, Psychobiol., 16: 157–163.Google Scholar
  219. Takahashi, T., 1983, Transplacental effects of 3,5-dimethyl-3’-isopropyl-l-thyronine on tubulin content in fetal brains in rats, Jap. J. Physiol., 34: 365–368.CrossRefGoogle Scholar
  220. Taylor, B. A. and Rowe, L., 1987, The congenital goiter mutation is linked to the thyroglobulin gene in the mouse, Proc. Natl. Acad. Sci. USA, 84: 1986–90.PubMedCrossRefGoogle Scholar
  221. Tucker, R.P., Garner, C.C., and Matus, A., 1989, In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain, Neuron, 2: 1245–1256.PubMedCrossRefGoogle Scholar
  222. Uziel, A., 1986, Periods of sensitivity to thyroid hormone during the development of the organ of Corti, Acta Otolaryngol. Suppl., 429: 23–27.PubMedCrossRefGoogle Scholar
  223. Vallee, R. B. and Bloom, G. S., 1991, Mechanisms of fast and slow axonal transport, Ann. Rev. Neurosci., 14: 59–92.PubMedCrossRefGoogle Scholar
  224. Van Middlesworth, L. and Norris, C. H., 1980, Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment, Endocrin., 106: 16–86.Google Scholar
  225. Vulsma, T., Gons, M. H., and de Vijlder, J. J. M., 1989, Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect of thyroid agenesis, NEJM, 321: 13–16.PubMedCrossRefGoogle Scholar
  226. Weinstein, S. L. and Tharp, B. R., 1989, Etiology and timing of static encephalopathies of childhood (cerebral palsy), in: “Fetal and Neonatal Brain Injury,’ D. K. Stevenson and P. Sunshine, eds., B.C. Decker, Inc., Philadelphia.Google Scholar
  227. Wise, S. P., Fleshman, J. W., and Jones, E. G., 1979, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neurosci., 4: 1275–1297.CrossRefGoogle Scholar
  228. Wolter, R., Noel, P., de Cock, P., Craen, M., Ernould, C., Malvaux, P., Verstraeten, F., Simons, J., Mertens, S., Van Broeck, N., and Vanderschueren-Lodeweyck, M., 1979, Neuropsychological study in treated thyroid dysgenesis, Acta Paediatr Scand. Suppl., 277: 41–45.PubMedCrossRefGoogle Scholar
  229. Wujek, J. and Lasek, R. J., 1983, Correlation of axonal regeneration and slow component b in two branches of a single axon, J. Neurosci., 3: 243–257.PubMedGoogle Scholar
  230. Yamada, K.M., Spooner B.S., Wessells N.K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Bio., 49: 614–635.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. A. Stein
    • 1
  • P. M. Adams
    • 2
  • D. R. Shanklin
    • 3
  • G. A. Mihailoff
    • 4
  • M. B. Palnitkar
    • 1
  1. 1.Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.Departments of Pathology and Obstetrics and GynecologyUniversity of Tennessee-MemphisMemphisUSA
  4. 4.Department of Cell Biology and AnatomyUniversity of Mississippi School of MedicineJacksonUSA

Personalised recommendations