Advertisement

Kinetics of Overlayer Growth

  • G.-C. Wang
  • J.-K. Zuo
  • T.-M. Lu
Part of the NATO ASI Series book series (NSSB, volume 267)

Abstract

Atoms or molecules adsorbed on crystalline surfaces often form interesting equilibrium structures depending upon the balance between adsorbate-adsorbate and adsorbate-substrate interactions. These various structures are functions of temperature and coverage and can lead to phase diagrams with phase boundaries separating ordered, disordered, and phase coexistence regions. These are commonly studied using low energy electron diffraction (LEED) and grazing incidence X-ray diffraction. While equilibrium properties of overlayers have been extensively studied in the past few decades, much less is known about the kinetics of growth processes and overlayer ordering, especially the relaxation from a state far from equilibrium.1 This irreversible and highly nonlinear phenomenon occurs frequently in solids, for examples, during crystal and alloy growth.2 Only recently, considerable effort has been focused on understanding the dynamics of overlayer domain growth during the relaxation from an extreme non-equilibrium state to an equilibrium state.3,4 This process involves fundamental questions in non-equilibrium statistics. The interesting and important issues of the dynamics include the law that describes the domain growth, the value of the growth exponents, the form of the dynamical scaling function (self-similar growth) of the non-equilibrium structure factor, and the relevant parameters for determining the possible dynamical universality classes such as ground state degeneracy, conservation or non-conservation of order parameter and density, temperature, interaction potential and randomness (impurities and vacancies).

Keywords

Finite Size Effect Domain Growth Growth Exponent Terrace Width Ground State Degeneracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For review, see J.D. Gunton, M. San Miguel, and P.S. Sahni, in “Phase Transitions and Critical Phenomena”, C. Domb and J.L. Lebowitz, ed., Vol. 8, Academic Press, New York (1983).Google Scholar
  2. 2.
    For example, see “Dynamics of Ordering Process in Condensed Matter”, S. Komura and H. Furukawa, ed., Plenum Press, New York (1988).Google Scholar
  3. 3.
    O.G. Mouritsen in “Kinetics of Ordering and Growth at Surfaces”, M.G. Lagally, ed., Plenum Press, New York (1990) and references therein.Google Scholar
  4. 4..
    K. Heinz, in “Kinetics of Interface Reactions”, M. Grunze and M.J. Kreuzer, ed., Springer-Verlag (1987), p. 202.Google Scholar
  5. 5..
    I.M. Lifshitz, Sov. Phys. JETP 15:939 (1962) [J. Eksptl. Theoret. Phys. (USSR) 42: 1354 (1962)].Google Scholar
  6. 6.
    S.M. Allen and J.W. Cahn, Acta Metall. 27:1085 (1979).CrossRefGoogle Scholar
  7. 7.
    S.A. Safran, Phys. Rev. Lett. 46:1581 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    P.S. Sahni, D.J. Srolovitz, G.S. Grest, M.P. Anderson, and S.A. Safran, Phys. Rev. B 28:2705 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    M.P. Anderson, D.J. Srolovitz, G.S. Crest, and P.S. Sahni, Acta Metall. 32:783 (1984).CrossRefGoogle Scholar
  10. 10.
    D.J. Srolivitz, M.P. Anderson, P.S. Sahni, and G.S. Grest, Acta Metall. 32:793 (1984).CrossRefGoogle Scholar
  11. 11.
    A. Sadiq and K. Binder, Phys. Rev. Lett. 51:674 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    S. Kumar, J.D. Gunton, and K.K. Kaski, Phys. Rev. B 35:8517 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    G.S. Grest, M.P. Anderson, and D.J. Srolovitz, Phys. Rev. B 38:4752 (1988).ADSCrossRefGoogle Scholar
  14. 14.
    H.C. Fogedby and O.G. Mouritsen, Phvs. Rev. B 37:5962 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    T. Ala-Nissila and J.D. Gunton, in “Kinetics of Interface Reactions”, M. Grunze and H.J. Kreuzer ed., Springer Verlag, Berlin (1987), p. 253.CrossRefGoogle Scholar
  16. 16.
    I.M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solid 19:35 (1961).ADSCrossRefGoogle Scholar
  17. 17.
    P.S. Sahni, G. Dee, J.D. Gunton, M. Phani, J.L. Lebowitz, and M.H. Kalos, Phys. Rev. B 24:410 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    K. Kaski, M.C. Yalabik, J.D. Gunton, and P.S. Sahni, Phys. Rev. B 28:5263 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Gunton, in “Kinetics of Interface Reactions”, M. Grunze and H.J. Kreuzer, ed., Springer-Verlag, Berlin (1987), p. 239.Google Scholar
  20. 20.
    K. Binder, Ber. Bunsenges. Phys. Chem. 90:257 (1986)Google Scholar
  21. V.P. Zhadanov, Surf. Sci. 194:L100 (1988).ADSCrossRefGoogle Scholar
  22. 21.
    K. Kawasaki, M.C. Yalabik, and J.D. Gunton, Phys. Rev. A 17:455 (1978).ADSCrossRefGoogle Scholar
  23. 22.
    T. Ohta, D. Jasnow, and K. Kawasaki, Phys. Rev. Lett. 49:1223 (1982).ADSCrossRefGoogle Scholar
  24. 23.
    G.F. Mazenko and O.T. Valls, Phys. Rev. B 30:6732 (1984).ADSCrossRefGoogle Scholar
  25. 24.
    H. Tornita, Prog. Theor. Phys. 75:482 (1986).ADSCrossRefGoogle Scholar
  26. 25.
    Y. Imry and S.-K. Ma, Phvs. Rev. Lett. 35:1399 (1975).ADSCrossRefGoogle Scholar
  27. 26.
    J. Villain, Phvs. Rev. Lett. 52:1543 (1984)ADSCrossRefGoogle Scholar
  28. G. Grinstein and J.F. Fernandez, Phys. Rev. B 29:6389 (1984).ADSCrossRefGoogle Scholar
  29. 27.
    Martin Grant and J.D. Gunton, Phys. Rev. B 29:6266 (1984).ADSCrossRefGoogle Scholar
  30. 28.
    R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52:1547 (1984).ADSCrossRefGoogle Scholar
  31. 29.
    M. Grant and J.D. Gunton, Phys. Rev. B 35:4922 (1987).ADSCrossRefGoogle Scholar
  32. 30.
    E.T. Gawlinski, K. Kaski, M. Grant, and J.D. Gunton, Phys. Rev. Lett. 53:2266 (1984).ADSCrossRefGoogle Scholar
  33. 31.
    E.T. Gawlinski, S. Kumar, M. Grant, J.D. Gunton, and K. Kaski, Phys. Rev. B 32:1575 (1985).ADSCrossRefGoogle Scholar
  34. 32.
    Gary S. Grest and David J. Srolovitz, Phys. Rev. B 32:3014 (1985).ADSCrossRefGoogle Scholar
  35. 33.
    Scott R. Anderson, Phys. Rev. B 36:8435 (1987).ADSCrossRefGoogle Scholar
  36. 34.
    D.J. Srolovitz and G.N. Hassold, Phvs. Rev. B 35:6902 (1987).ADSCrossRefGoogle Scholar
  37. 35.
    O.G. Mouritsen and P.J. Shah, in “Kinetics of Ordering and Growth at Surfaces”, M.G. Lagally, ed., Plenum Press, New York (1990).Google Scholar
  38. 36.
    J.-K. Zuo, G.-C. Wang, and T.-M. Lu, Phys. Rev. Lett. 60:1053 (1988).ADSCrossRefGoogle Scholar
  39. 37.
    J.-K. Zuo, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 39:9432 (1989)ADSCrossRefGoogle Scholar
  40. J.-K. Zuo and G.-C. Wang, J. Vac. Sci. Technol. A 7:2155 (1989).ADSCrossRefGoogle Scholar
  41. 38.
    U. Scheithauer, G. Meyer, and M. Henzler, Surf. Sci. 178:441 (1986).ADSCrossRefGoogle Scholar
  42. 39.
    J.-K. Zuo, G.-C. Wang, and T.-M. Lu, Phvs. Rev. B 40:524 (1989).ADSCrossRefGoogle Scholar
  43. 40.
    C.C. Chang and L.H. Germer, Surf. Sci. 8:115 (1967).ADSCrossRefGoogle Scholar
  44. 41.
    H.L. Davis and G.-C. Wang, Bull. Am. Phys. Soc. 29:221 (1984).Google Scholar
  45. 42.
    G.-C. Wang and T.-M. Lu, Phys. Rev. B 28:6795 (1983).ADSCrossRefGoogle Scholar
  46. 43.
    G.-C. Wang and T.-M. Lu, Phys. Rev. B 31:5918 (1985).ADSCrossRefGoogle Scholar
  47. 44.
    J.-K. Zuo and G.-C. Wang, Phys. Rev. B 41:7078 (1990).ADSCrossRefGoogle Scholar
  48. 45.
    E. Domany, M. Shick, J.S. Walker, and R.B. Griffiths, Phys. Rev. B 18:2209 (1978); ibid 20:3828 (1979).Google Scholar
  49. 46.
    G.-C. Wang and T.-M. Lu, Phys. Rev. Lett. 50:2014 (1983).ADSCrossRefGoogle Scholar
  50. 47.
    P.K. Wu, J.H. Perepezko, J.T. McKinney, and M.G. Lagally, Phys. Rev. Lett. 51:1577 (1983)ADSCrossRefGoogle Scholar
  51. P.K. Wu, M.C. Tringides, and M.G. Lagally, Phys. Rev. B 39:7595 (1989).ADSCrossRefGoogle Scholar
  52. 48.
    M.C. Tringides, P.K. Wu, W. Moritz, and M.G. Lagally, Ber. Bunsenges. Phys. Chem. 90:277 (1986).Google Scholar
  53. 49.
    J.-K. Zuo and G.-C. Wang, Surf. Sci. 194:L77 (1988).ADSCrossRefGoogle Scholar
  54. 50.
    J.M. Pimbley, T.-M. Lu, and G.-C. Wang, J. Vac. Sci. Technol. 4:1357 (1986).ADSCrossRefGoogle Scholar
  55. 51.
    G. Ertl and M. Plancher, Surf. Sci. 48:364 (1975).ADSCrossRefGoogle Scholar
  56. 52.
    M.C. Tringides and R. Comer, J. Chem. Phys. 84:4049 (1986).ADSCrossRefGoogle Scholar
  57. 53.
    G. Porod, in “Small Angle X-Ray Scattering”, Glatter and O. Kratky, ed., Academic Press, New York (1982).Google Scholar
  58. 54.
    A. Sadiq and K. Binder, J. Stat. Phys. 35:517 (1984).MathSciNetADSCrossRefGoogle Scholar
  59. 55.
    E.T. Gawlinski, M. Grant, J.D. Gunton, and K. Kaski, Phys. Rev. B 31:281 (1985).ADSCrossRefGoogle Scholar
  60. 56.
    J.-K. Zuo and G.-C. Wang, J. Vac. Sci. Technol. A6:649 (1988).ADSGoogle Scholar
  61. 57.
    E.T. Gawlinski, K. Kaski, M. Grant, and J.D. Gunton, Phys. Rev. Lett. 53:2266 (1984).ADSCrossRefGoogle Scholar
  62. 58.
    J. Villian, J. Phvs. (Paris) 43:L551 (1982).Google Scholar
  63. 59.
    Y. Imry and S.-K. Ma, Phys. Rev. Lett. 35:1399 (1975).ADSCrossRefGoogle Scholar
  64. 60.
    For review, J. Villian, in “Scaling Phenomena in Disordered Systems”, R. Pynn and A. Skjetorp, ed., Plenum Press, New York, (1985).Google Scholar
  65. 61.
    R.J. Birgeneau, R.A. Cowley, G. Shirane, and H. Yoshizawa, Phys. Rev. Lett. 54:2174 (1985) and references therein.Google Scholar
  66. 62..
    D.P. Belanger, A.R. King, and V. Jaccarino, Phys. Rev. B 31:4538 (1985) and references therein.Google Scholar
  67. 63.
    D. Chowdhury and D. Stauffer, Z. Phys. B 60:249 (1985).ADSCrossRefGoogle Scholar
  68. 64.
    E. Pytte, Y. Imry, and D. Mukamel, Phys. Rev. Lett. 46:1173 (1981)MathSciNetADSCrossRefGoogle Scholar
  69. K. Binder, Y. Imry, and E. Pytte, Phvs. Rev. B 24:6736 (1981)ADSCrossRefGoogle Scholar
  70. D. Mukamel and E. Pytte, ibid. 25:4779 (1982).ADSGoogle Scholar
  71. 65.
    E.T. Gawlinski, M. Grant, J.D. Gunton, and K. Kaski, Phys. Rev. B 24:281 (1985).ADSCrossRefGoogle Scholar
  72. 66.
    A. Sadiq and K. Binder, Phys. Rev. Lett. 51:674 (1983).ADSCrossRefGoogle Scholar
  73. 67.
    T.-M. Lu, L.-H. Zhao, M.G. Lagally, G.-C. Wang, and J.E. Houston, Surf. Sci. 122:519 (1982)ADSCrossRefGoogle Scholar
  74. G.-C. Wang and T.-M. Lu, ibid. 122:L635 (1982).ADSGoogle Scholar
  75. 68.
    L.-H. Zhao, T.-M. Lu, and M.G. Lagally, Appl. Surf. Sci. 11/12:634 (1982).Google Scholar
  76. 69.
    C.C. Chang, PhD Thesis, Cornell University (1967).Google Scholar
  77. 70.
    H. Busch and M. Henzler, Phys. Rev. B 41:4891 (1990).ADSCrossRefGoogle Scholar
  78. 71.
    H. Homma and R. Clarke, Phys. Rev. Lett. 52:629 (1984).ADSCrossRefGoogle Scholar
  79. 72.
    W. Witt and E. Bauer, Ber. Bunsenges. Phys. Chem. 90:248 (1986).Google Scholar
  80. 73.
    M.C. Tringides, P.K. Wu, and M.G. Lagally, Phys. Rev. Lett. 59:315 (1987).ADSCrossRefGoogle Scholar
  81. 74.
    M.C. Tringides, Growth Kinetics of 0/W(110) at High Coverage, preprint.Google Scholar
  82. 75.
    H. You, S.C. Fain, S. Satija, and L. Passell, Phys. Rev. Lett. 56:244 (1986); H. You and S.C. Fain, Phys. Rev. B 34:7840 (1988); R.D. Diehl, in “The Time Domain in Surface and Structural Dynamics”, G.J. Long and F. Grandjean, ed., Kluwer Academic Publishers (1988), p. 439.Google Scholar
  83. 76.
    E.J. Nicol. C. Kallin, and A.J. Berlinskez, Phys. Rev. B 38:556 (1988).ADSCrossRefGoogle Scholar
  84. 77.
    E. Bauer and W. Telieps, Scanning Microscopy Supplement 1:99 (1987).Google Scholar
  85. 78.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 58:120 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G.-C. Wang
    • 1
  • J.-K. Zuo
    • 1
  • T.-M. Lu
    • 1
  1. 1.Department of PhysicsRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations