Advertisement

The Methane/Graphite Phase Diagram

  • D. L. Goodstein
  • M. A. La Madrid
  • M. J. Lysek
Part of the NATO ASI Series book series (NSSB, volume 267)

Abstract

Methane adsorbed on graphite has been one of the most intensely studied of all multilayer film systems. A rather detailed phase diagram for the system was proposed by Goodstein et al. in 1984, [1] elaborated and embellished by Wortis in 1984,[2] and modified by Pettersen et al. in 1986.[3] The purpose of proposing the phase diagram was to stimulate further research by presenting hypotheses to be tested and drawing attention to open questions. The authors of the phase diagram had to confront some of the most interesting and vexing issues in the field of adsorbed films today: Does the adsorbed solid wet the substrate, and if so, why? Is there evidence of roughening, capillary condensation, or surface melting? Most intriguing of all, can one observe a dimensional crossover, from 2D to 3D behavior in the melting transition? The authors proposed answers to all of those questions. The purpose of this paper is to reexamine those proposed answers in the light of subsequent experimental and theoretical work on methane/graphite and other related systems. As we shall see, although much has been learned, many of the questions remain open. This is very much a work in progress.

Keywords

Triple Point Capillary Condensation Surface Melting Melting Transition Heat Capacity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. L. Goodstein, J. J. Hamilton, M. J. Lysek, and G. Vidali, Surf. Sci. 148, 187 (1984).ADSCrossRefGoogle Scholar
  2. [2]
    M. Wortis, in Fundamental Problems in Statistical Mechanics VI, ed. E.G.D. Cohen ( North-Holland, Amsterdam, 1985 ), p. 87.Google Scholar
  3. [3]
    M. S. Pettersen, M. J. Lysek, D. L. Goodstein, Surf. Sci. 175, 141 (1986).ADSCrossRefGoogle Scholar
  4. [4]
    A summary of papers giving first layer data can be found in Refs. [21–24] of Hamilton and Goodstein, Ref. [9].Google Scholar
  5. [5]
    R. Pandit, M Schick, and M. Wortis, Phys. Rev. B 26, 5112 (1982);ADSCrossRefGoogle Scholar
  6. M. J. de Oliveira and R. B. Griffiths, Surf. Sci. 71, 687 (1978).CrossRefGoogle Scholar
  7. [6]
    M. S. Pettersen, M. J. Lysek, D. L. Goodstein, Phys. Rev. B 40, 4938 (1989).ADSCrossRefGoogle Scholar
  8. [7]
    R. Pandit and M. E. Fisher, Phys. Rev. Lett. 51, 1772 (1983).ADSCrossRefGoogle Scholar
  9. [8]
    C. Ebner, Phys. Rev. B 28, 2890 (1983);ADSCrossRefGoogle Scholar
  10. M. W. Conner and C. Ebner, Phys. Rev. B 36, 3683 (1987);ADSCrossRefGoogle Scholar
  11. C. Ebner, in Chemistry and Physics of Solid Surfaces VI, edited by R. Vanselow and R. Howe ( Springer-Verlag, New York, 1986 ), p. 581.Google Scholar
  12. [9]
    J. J. Hamilton and D. L. Goodstein, Phys. Rev. B 28, 3838 (1983).ADSCrossRefGoogle Scholar
  13. [10]
    D.-M. Zhu and J. G. Dash, Phys. Rev. B 38, 11673 (1988);ADSCrossRefGoogle Scholar
  14. D.-M. Zhu and J. G. Dash, Phys. Rev. Lett. 60, 432 (1988);ADSCrossRefGoogle Scholar
  15. D.-M. Zhu and J. G. Dash, Phys. Rev. Lett. 57, 2959 (1986).ADSCrossRefGoogle Scholar
  16. [11]
    Y. Lahrer and F. Angerand, Europhys. Lett. 7, 447 (1988).ADSCrossRefGoogle Scholar
  17. [12]
    M. Bienfait, P. Zeppenfeld, J. M. Gay, J. P. Palmari, Surf. Sci. 226, 327 (1990).ADSCrossRefGoogle Scholar
  18. [13]
    J. Krim, J. M. Gay, J. Suzanne, E. Lerner, J. Physique 47, 1757 (1986).CrossRefGoogle Scholar
  19. [14]
    H. K. Kim, Q. M. Zhang, M.H.W. Chan, J. Chem. Soc., Faraday Trans. 2, 82, 1647 (1986).Google Scholar
  20. [15]
    H. S. Nham and G. B. Hess, Langmuir 5, 575 (1989).CrossRefGoogle Scholar
  21. [16]
    A. Inaba, and J. A. Morrison, Chem. Phys. Leit. 124, 361 (1986).ADSCrossRefGoogle Scholar
  22. [17]
    A. Thorny and X. Duval, J. Chico. Phys. 66, 1966 (1969);Google Scholar
  23. A. Thorny and X. Duval, J. Chico. Phys. 67, 286 (1970);Google Scholar
  24. A. Thorny and X. Duval, J. Chico. Phys. 67, 1101 (1970).Google Scholar
  25. [18]
    J. Krim, J. G. Dash, and J. Suzanne, Phys. Rev. Lett. 52, 640 (1984).ADSCrossRefGoogle Scholar
  26. [19]
    M. J. Lysek, M. S. Pettersen, and D. L. Goodstein, Phys. Lett. A 115, 340 (1986).ADSCrossRefGoogle Scholar
  27. [20]
    M. S. Pettersen and D. L. Goodstein, Surf. Sci. 209, 455 (1989).ADSCrossRefGoogle Scholar
  28. [21]
    J. H. Quateman and M. Bretz, Phys. Rev. B 29, 1159 (1984).ADSCrossRefGoogle Scholar
  29. [22]
    D. A. Huse, Phys. Rev. B 29, 6985 (1984);MathSciNetADSCrossRefGoogle Scholar
  30. F. T. Gittes and M. Schick, Phys. Rev. B 30, 209 (1984).ADSCrossRefGoogle Scholar
  31. [23]
    J. Z. Larese, M. Harada, L. Passell, J. Krim, S. Satija, Phys. Rev. B 37, 4735 (1988).ADSCrossRefGoogle Scholar
  32. [24]
    J. M. Phillips and C. D. Hruska, Phys. Rev. B 39, 5425 (1989).ADSCrossRefGoogle Scholar
  33. [25]
    D. B. Pengra, D. M. Zhu and J. G. Dash, preprint (1990).Google Scholar
  34. [26]
    M. Bienfait, Europhys. Lett. 4, 79 (1987).ADSCrossRefGoogle Scholar
  35. [27]
    L. D. Landau and E. N. Lifshitz, in Statistical Physics, 3rd ed., edited by E. M. Lifshitz, L. P. Pitaevskii, J. B. Sykes, and M. J. Kearsley (Pergamon, Oxford, 1982 ), Pt. I.Google Scholar
  36. [28]
    P. G. deGennes, J. Phys. (Paris) Lett. 42, 1377 (1981).Google Scholar
  37. [29]
    G. An and M. Schick, Phys. Rev. B 37, 7534 (1988) and Ebner Ref. [8] have obtained related phase diagrams studying lattice gas models.Google Scholar
  38. [30]
    M. Dowell and R. Howard, Carbon 24, 311 (1986).CrossRefGoogle Scholar
  39. [31]
    D. S. W. Kwoh, Ph.D. Thesis, California Institute of Technology, 1979.Google Scholar
  40. [32]
    E. Cheng and M. W. Cole, Phys. Rev. B 38, 987 (1988).ADSCrossRefGoogle Scholar
  41. [33]
    W. F. Saam and M. W. Cole, Phys. Rev. B 11, 1086 (1975).ADSCrossRefGoogle Scholar
  42. [34]
    A Compendium of the Properties of Materials at Low Temperature (Phase I), Pt. I. Properties of Fluids; V. J. Johnson, ed.; WADD Technical Report 60–56; Wright Air Development Division, 1960.Google Scholar
  43. [35]
    G. Zimmerli and M.H.W. Chan, preprint (1990).Google Scholar
  44. [36]
    Recent reviews of surface melting appear in J. G. Dash, Contemporary Physics, 30, 89 (1989);CrossRefGoogle Scholar
  45. J. F. van der Veen, B. Pluis. Denier van der Gon in Chemistry and Physics of Solid Surfaces VII, eds. R. Vanselow and R. F. Howe ( Springer-Verlag, Berlin, Heidelberg (1988), p. 455.Google Scholar
  46. [37]
    Discussions of the location of the specific heat bump relative to TRare given in the chapters by den Nijs, Villain, and Lapujoulade. It is suggested that there are no special reasons for the bump to be at, before, or after TR.Google Scholar
  47. [38]
    This is also discussed in the book by R. Defay, I. Prigogine, A. Bellemans, and D.H. Everett, Surface Tension and Adsorption, (John Wiley and Sons, Inc., New York, New York, 1966 ).Google Scholar
  48. [39]
    E. Cheng and Milton W. Cole, Phys. Rev. B, 41, 9650 (1990).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. L. Goodstein
    • 1
  • M. A. La Madrid
    • 1
  • M. J. Lysek
    • 1
  1. 1.Department of PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations