Frost Heave and the Surface Melting of Ice

  • J. G. Dash
Part of the NATO ASI Series book series (NSSB, volume 267)


Ice is the most common substance exhibiting premelting phenomena. Observations by a variety of experimental techniques have shown that liquid water persists in porous media, to temperatures as low as –40° C. The melting of ice at surfaces has extremely important consequences in the environment, including the low frictional resistance of ice, the sintering of snow, and the creep of glaciers. There are serious non equilibrium effects associated with the persistence of liquid water at subzero temperatures; migration of this water under temperature gradients accounts for frost heave, which damages man made structures and acts as an agent for extensive geological change in temperate and subpolar climates. The causes of the persistence of unfrozen water and its migration in temperature gradients have been actively debated for many years, but a considerable advance in their explanation can be made in terms of recent developments in the fundamental theory of surface melting. This paper reviews the environmental effects and laboratory studies, and discusses the phenomena in the context of the physics of surface melting.


Proximity Effect Surface Melting Interfacial Free Energy Subzero Temperature Unfrozen Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson,D.M. and Morgenstern, N.R., 1973, in Permafrost, Proc. 2nd Int. Conf., Natl. Acad. Sci., Wash. D.C., pp 257–288.Google Scholar
  2. Anderson,S.P., 1988, Bull. Geol. Soc. Am.100, 609; Proc. 5th Int. Conf. Permafrost, Trondheim, 666.Google Scholar
  3. Barer, S.S., Kvilividze, V.I., Kurzaev, A.B., Sobolev, V.D., and Churaev, N.V., 1977, Dokl. AN SSSR 235, 601.Google Scholar
  4. Barer, S.S., Churaev,N.V., Derjaguin, B.V., Kisileva, O.A., and Sobolev, V.D., 1980, J. Colloid Interface Sci. 74, 173.CrossRefGoogle Scholar
  5. Black, P.B. and Tice, A.R. 1989, Wat. Resources. Res. 25, 2205.ADSCrossRefGoogle Scholar
  6. Broughton, J.Q., Bonissent, A.and Abraham, F.F., 1981, J. Chem. Phys. 74, 4029;ADSCrossRefGoogle Scholar
  7. Oxtoby, D. and Haymet, A.D.J., 1982, J. Chem. Phys. 76, 6262;ADSCrossRefGoogle Scholar
  8. Israelachvili, J.N. and McGuiggan, P.M., 1988, Science 241, 795 (1988);ADSCrossRefGoogle Scholar
  9. Tarazona,P., and Vicente, L., 1985, Mol. Phys. 56, 557.ADSCrossRefGoogle Scholar
  10. Broughton, J.Q. and Gilmer, G.H. 1983, J. Chem. Phys. 79, 5119 (1983).Google Scholar
  11. Buil,M., Soisson, A. and Aguirre-Puente,J., 1981, C.R.Acad.Sci.(Paris) 293, ser.lI, 653.Google Scholar
  12. Cary, J.W. 1987, Water Resources Res. 23, 1620.ADSCrossRefGoogle Scholar
  13. Colbeck,S.C., 1979, J.Colloid Interface Sci. 72. 371.CrossRefGoogle Scholar
  14. Dash, J.G., 1988, in Proc. Solvay Conference on Surface Science, F.W. de Wette, ed., Springer-Verlag; 1989a, Contemp.Phys. 30, 89; 1989b, Science 246, 1591.Google Scholar
  15. Derjaguin B.V.and Churaev,N.V., 1986, Cold Regions Science and Technology 12, 57.CrossRefGoogle Scholar
  16. Deschatres, M.H., Cohen-Tenoudji, F., and Aguirre-Puente, J., 1989, 5th Int. Symp. on Ground Freezing, Nottingham, p. 551.Google Scholar
  17. Dietrich, S., (Academic, London 1988 ) in Phase Transitions and Critical Phenomena, ed. by C. Domb and J. Lebowitz, Vol. 12.Google Scholar
  18. Dietrich, S. and Napiorkowski, M. 1990, private communication.Google Scholar
  19. Forland,K.S.,Forland,T., and Ratkje, S.K.,1988, Irreversible Thermodynamics,J. Wiley and Sons, pp.235–244.Google Scholar
  20. Gilpin, R.R., 1980a, J. Colloid Interface Sci. 77, 435;CrossRefGoogle Scholar
  21. Gilpin, R.R., 1980b, Wat. Resources Res. 16, 918.ADSCrossRefGoogle Scholar
  22. Hallet, B., 1976, J. Glaciology 17, 209;ADSGoogle Scholar
  23. Hallet, B., Anderson, S.P., Stubbs, C.W., and Gregory, E.C., 1988, Proc. 5th Intl. Conf. on Permafrost, Trondheim, 770.Google Scholar
  24. Hiroi,M.,Mizusaki,T., Tsuneto,T., Hírai A. and Eguchi,K., 1989, Phys. Rev. B40, 6581ADSCrossRefGoogle Scholar
  25. Kisileva,O.A. and Sobolev,V.D., 1980, J. Coll. Interf. Sci. 1980, 74, 173.Google Scholar
  26. W. R. Koopmans and R. D. Miller, Proc. Soil Sci. Soc. Am. 30, 680 (1966). Kuroda,T. and Lacmann,R.,1982, J.Cryst. Growth 56, 189.Google Scholar
  27. Kuroda,T.,1985, 4th Int. Symp. Ground Freezing, Sapporo; 1987, Physique 48, C1–487.Google Scholar
  28. Kvilividze, V.I., Kisilev, V.F., Kurzaev, A.B., and Ushakova, L.A., 1974, Surf. Sci. 44, 60.ADSCrossRefGoogle Scholar
  29. Lipowsky, R., 1982, Phys. Rev. Lett. 49, 1575.ADSCrossRefGoogle Scholar
  30. Low, P.F. 1976,1979,1980, Soil Sci. Soc. Am. J. 40, 500; 43, 651; 44, 667.Google Scholar
  31. Maruyama,M., Bienfait, M., Coddens, G., and Dash, J.G., 1990, private communication.Google Scholar
  32. Miller,R.D., 1978, Proc. 3rd Int. Conf. on Permafrost, National Research Council, Ottawa.Google Scholar
  33. Mizuno, Y. and Hanafusa, N., 1987, J. de Physique C1–48, c1–511.Google Scholar
  34. Mulla,D.J., 1983a, J. Coll. Interf. Sci. 100, 576;CrossRefGoogle Scholar
  35. Mulla, D.J. and Low, P.F. 1983b, J. Coll. Interf. Sci. 95, 51.CrossRefGoogle Scholar
  36. Nenow, D. and Trayanov,A., 1986, J. Cryst. Growth 79, 801.ADSCrossRefGoogle Scholar
  37. Ocampo,J. and Klinger,J., 1983, J.Phys.Chem. 87, 4325.CrossRefGoogle Scholar
  38. Oliphant, J.L. and Low, P.F. 1982, 1983, J. Coll. Interf. Sci. 89, 366; 95, 45.Google Scholar
  39. O’Neill, K. and Miller, R.D., 1985, Water Resources Res. 21, 281.ADSCrossRefGoogle Scholar
  40. Page, D.L. 1972, in Water, a Comprehensive Treatise, v. 1, (F. Franks, ed.), Plenum Press.Google Scholar
  41. Piper, D., Holden, J.T., and Jones, R.H. 1988, 5th Int. Conf. on Permafrost, Norway, p. 370.Google Scholar
  42. Polar Research Board 1984. Ice Segregation and Frost Heaving, Nat.Acad.Press, Wash.D.C.Google Scholar
  43. Radd, F.J. and Oertle, D.H., 1973, 2nd Int. Symp. Permafrost, Yakutsk, p. 377.Google Scholar
  44. Riecke, R.D., Vison, T.S., Mageau, D.W., 1983, Proc. 4th Intl. Conf. on Permafrost, Fairbanks, 1066. 2734.Google Scholar
  45. Schick, M., 1988, in Liquids al Interfaces, Les Houches Summer Scool Lectures, Session XLVIII, to be published.Google Scholar
  46. Shreve,R.L. 1984, J.Glaciology 30, 341.ADSGoogle Scholar
  47. Smith, M.W. and Tice, A.R. 1988, 5th Int. Conf. on Permafrost, TrondheimGoogle Scholar
  48. Taber, S., 1929, J. Geol. 37, 428;ADSCrossRefGoogle Scholar
  49. Taber, S., 1930, J. Geol. 38, 303.ADSCrossRefGoogle Scholar
  50. Takashi, T., Ohrai, T., Yamamoto, H., and Okamoto, J., 1981, Eng. Geol. 18, 245.CrossRefGoogle Scholar
  51. Tice, A.R., Oliphant, J.L., Nakano, Y., and Jenkins, T.F. 1982, Cold Regions Research and Engineering Laboratory Report 82–15, Office of the Chief of the US Army Corps of Engineers.Google Scholar
  52. Tice, A.R., Zhu Yuanlin, and Oliphant, J.L., 1984, CRREL Report 84–16.Google Scholar
  53. Tice, A.R. and Hallet, B., 1990, private communication.Google Scholar
  54. van der Veen, J.F., Pluis, B., and Denier van der Gon, A.W., 1988, in Chemistry and Physics of Solid Surfaces, Vol.VII,Springer-Verlag.Google Scholar
  55. van Loon, W.K.P., Perfect, E., Groenevelt, P.H., and Kay, B.D. 1990, Proc. Int. Symp. on Frozen Soil Impacts on Agricultural, Range, and Forest Lands, Spokane, Washington, (K.R.Cooley, ed.), CRREL Special Rpt. 90–1, p.186.Google Scholar
  56. Van Vliet-Lanoe, B., 1988, Proc. 5th Intl. Conf. on Permafrost, Trondheim, 1088. Vignes,M. and Dijkema,K.M. 1974, J. Coll. Interface Sci. 49, 165Google Scholar
  57. Wagner, H. 1990, private communication.Google Scholar
  58. Walder, J., and Hallet, B., 1985, Geol. Soc. of America, Bulletin 96, 336;Google Scholar
  59. Walder, J., and Hallet, B., 1986, Arctic and Alpine Res., 18, 27.CrossRefGoogle Scholar
  60. Weber, T.A. and Stillinger, F.H., 1983, J.Phys.Chem. 87, 4277.CrossRefGoogle Scholar
  61. Van Vliet-Lanoe, B., 1988, Proc. 5th Intl. Conf. on Permafrost, Trondheim, 1088. Vignes,M. and Dijkema,K.M. 1974, J. Coll. Interface Sci. 49, 165Google Scholar
  62. Zemansky, M.W. 1944, private communication. One of the author’s most vivid memories as an undergraduate at The City College of New York (now CUNY) is of Prof. Mark Zemansky demonstrating wire regelation to the Physics Club. After explaining the physical principles according to the pressure melting mechanism, he admitted that the actual process “seems to be more complicated than that”.Google Scholar
  63. D. M. Zhu and J. G. Dash, Phys. Rev. Rev. Lett. 60, 432 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. G. Dash
    • 1
  1. 1.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations