Thermal Dynamics of Nonvicinal Metal Surfaces

  • Klaus Kern
Part of the NATO ASI Series book series (NSSB, volume 267)


The atoms in the surface of a crystal are missing part of their nearest neighbors which gives rise to a charge redistribution in the selvedge. This changed force field is responsible for noticeable interlayer relaxations in the near surface region. Intuitively the inward relaxation of the outermost surface layer can be explained by the tendency of the valence electrons to spill over the surface in order to create a lateral smoothing of the electronic charge density1. The new electron distribution causes electrostatic forces on the ion cores of the surface atoms, resulting in a contraction of the first interlayer spacing (d12 < db). This relaxation is most pronounced for open, loosely packed, surfaces. In addition, the changes in the force field can also favor lateral atomic rearrangements in the surface plane. The surface “reconstructs” into a phase with new symmetry. These reconstructive surface phase transition can either occur spontaneously or be activated by temperature or by small amounts of adsorbates 2.


Scanning Tunneling Microscopy Thermal Excitation Macroscopic Length Scale Resonance Phonon Outermost Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.W. Finnis and U.J. Heine; J. Phys. F4, L37 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    J.E. Englesfield; Prog. Surf. Sci. 20, 105 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    J.F. van der Veen, B. Pluis, and A.W. Denier van der Gon; in “Physics and Chemistry at Solid Surfaces VII”, ( Springer, Berlin, 1988 ), p. 455Google Scholar
  4. 4.
    F.A. Lindemann; Z. Phys. 14, 609 (1910)Google Scholar
  5. 5.
    J. Frenkel; J. Phys. USSR 9, 392 (1945)Google Scholar
  6. 6.
    W.K. Burton and N. Cabrera; Disc. Faraday. Soc. 5, 33 (1949)CrossRefGoogle Scholar
  7. 7.
    W.K. Burton, N. Cabrera and F.C. Frank; Philos. Trans. Roy. Soc. London 243 A, 299 (1951)Google Scholar
  8. 8.
    R.W. Swendson; Phys. Rev. B17, 3710 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    H. van Beijeren and I. Nolden; in Structure and Dynamics of Surfaces II, (Springer, Berlin, 1986), p. 259; and references thereinGoogle Scholar
  10. 10.
    S. Balibar and B. Castaing; Surf. Sci. Rep. 5, 87 (1985)CrossRefGoogle Scholar
  11. 11.
    F. Fabre, D. Gorse, B. Salanon, and J. Lapujoulade; J. Physique 48, 1017 (1987)CrossRefGoogle Scholar
  12. 12.
    E.H. Conrad, L.R. Allen, D.L. Blanchard, T. Engel; Surf. Sci. 187, 265 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    P. Fery, W. Moritz, D. Wolf; Phys. Rev. B38, 7275 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    A. Trayanov, A.C. Levi, and E. Tosatti; Europhys. Lett. 8, 657 (1989);ADSCrossRefGoogle Scholar
  15. M. den Nijs; Phys. Rev. Lett. 64, 435 (1990)ADSCrossRefGoogle Scholar
  16. 15.
    M. Garofalo, E. Tosatti, and F. Ercolessi; Surf. Sci. 188, 321 (1987)ADSCrossRefGoogle Scholar
  17. 16.
    J.D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, Ed. 1. Riste, (Plenum, New York, 1980 ) p. 293Google Scholar
  18. J. Villain, D.R. Grempel, and J. Lapujoulade; J. Phys. F 15, 809 (1985)ADSCrossRefGoogle Scholar
  19. 17.
    I.K. Robinson, Y. Kuk and L.C. Feldman; Phys. Rev. 829, 4762 (1984)Google Scholar
  20. 18.
    R.S. Williams, P.S. Wehner, J. Stöhr and D.A. Shirley; Phys. Rev. Lett. 39, 302 (1977)ADSCrossRefGoogle Scholar
  21. 19.
    Th. Fauster, R. Schneider, H. Dürr, G. Engelmann, and E. Taglauer, Surf. Sci. 189 /190, 610 (1987)ADSCrossRefGoogle Scholar
  22. 20.
    S.G.J. Mochrie; Phys. Rev. Lett. 62, 63 (1987)Google Scholar
  23. 21.
    P. Zeppenfeld, K. Kern, R. David, and G. Comsa; Phys. Rev. Lett. 62, 63 (1989)ADSCrossRefGoogle Scholar
  24. 22.
    J. Lapujoulade, J. Perreau and A. Kara; Surf. Sci. 129, 59 (1983)ADSCrossRefGoogle Scholar
  25. 23.
    E.H. Conrad, L.R. Allen, D.L. Blachard, and 1. Engel; Surf. Sci. 198, 207 (1988)ADSCrossRefGoogle Scholar
  26. 24.
    J. Lapujoulade and B. Salanon, this proceedingGoogle Scholar
  27. 25.
    Y. Cao and E.H. Conrad; Phys. Rev. Lett. 64, 447 (1990)ADSCrossRefGoogle Scholar
  28. 26.
    E.T. Chen, R.N. Barnett and U. Landman; Phys. Rev. B41, 439 (1990);ADSCrossRefGoogle Scholar
  29. P. Stoltze, J. Norskov, and U. Landmann; Surf. Sci. 220, L693 (1989).CrossRefGoogle Scholar
  30. 27.
    H. Dürr, R. Schneider and Th. Fauster; Vacuum 41, 376 (1990)CrossRefGoogle Scholar
  31. 28.
    J.W.M. Frenken, F. Huussen and J.F. van der Veen; Phys. Rev. Lett. 58, 401 (1987)ADSCrossRefGoogle Scholar
  32. 29.
    C.S. Jayanthi, E. Tosatti, and L. Pietronero; Phys. Rev. B 31, 3456 (1985)ADSCrossRefGoogle Scholar
  33. 30.
    H.P. Bonzel and E. Latta; Surf. Sci. 76, 275 (1978)ADSCrossRefGoogle Scholar
  34. 31.
    H.P. Bonzel, in “Surface Mobilities on Solid Materials”, Ed. Vu Thien Binh, ( Plenum, New York, 1988 ), p. 195Google Scholar
  35. 32.
    H.P. Bonze], N. Freyer, and E. Preuss; Phys. Rev. Lett. 57, 1024 (1986)ADSCrossRefGoogle Scholar
  36. 33.
    N. Freyer; Ph.D. thesis, Technische Ilochschule Aachen (1985)Google Scholar
  37. 34.
    H.N. Yang, T.M. Lu, and G.C. Wang; Phys. Rev. Lett. 63, 1621 (1989)ADSCrossRefGoogle Scholar
  38. A. Pavlovska and E. Bauer; Appl. Phys. A 51, 172 (1990).ADSCrossRefGoogle Scholar
  39. 35.
    J.C. Heyraud and J.J. Metois; J. Cryst. Growth 82, 269 (1987)ADSCrossRefGoogle Scholar
  40. 36.
    G.A. Held, J.L. Jordan-Sweet, P.M. Horn, A. Mak, and R.J. Birgenau; Phys. Rev. Lett. 59, 2075 (1987)ADSCrossRefGoogle Scholar
  41. 37.
    S.M. Francis and N.U. Richardson; Phys. Rev. B 33, 662 (1986)ADSCrossRefGoogle Scholar
  42. 38.
    A.M. Lahee, J.P. Toennies, and Ch. Wöll; Surf. Sci. 191, 529 (1987);ADSCrossRefGoogle Scholar
  43. K.H. Rieder, private communication.Google Scholar
  44. 39.
    I.K. Robinson; private communicationGoogle Scholar
  45. 40.
    J.C. Campuzano, M.S. Foster, G. Jennings, R.F. Willis and W. Unertl; Phys. Rev. Lett. 54, 2684 (1985)ADSCrossRefGoogle Scholar
  46. 41.
    P. Bak; Solid State Commun. 32, 581 (1979)ADSCrossRefGoogle Scholar
  47. 42.
    G. Binning, H. Rohrer, Ch. Gerber and E. Weibel; Surf. Sci. 131, L379 (1983)CrossRefGoogle Scholar
  48. 43.
    J. Villain and I. Vilfan; Surf. Sci. 199, 165 (1988)ADSCrossRefGoogle Scholar
  49. 44.
    A.C. Levi and M. Touzani; Surf. Sci. 218, 223 (1989)ADSCrossRefGoogle Scholar
  50. 45.
    I.K. Robinson, E. Vlieg and K. Kern; Phys. Rev. Lett. 63, 2578 (1989)ADSCrossRefGoogle Scholar
  51. 46.
    K. Kern, I.K. Robinson, and E. Vlieg; Vacuum 41, 318 (1990)CrossRefGoogle Scholar
  52. 47.
    T. Gritsch, D. Coulman, R.J. Behm and G. Ertl; Phys. Rev. Lett. 63, 1068 (1989)ADSCrossRefGoogle Scholar
  53. 48.
    J. Villain and I. Vilfan; Phys. Rev. Lett. 65, 1830 (1990)ADSCrossRefGoogle Scholar
  54. 49.
    M. den Nijs; this proceeding;Google Scholar
  55. 50.
    L.D. Roelofs, S.M. Foiles, M.S. Daw, and M. Baskes; Surf. Sci. 234, 63 (1990)ADSCrossRefGoogle Scholar
  56. 51.
    A.P. Baddorf and E.W. Plummer; J. Electr. Spectr. Related Phenom. 54, 541 (1990)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Klaus Kern
    • 1
  1. 1.Institut für GrenzflächenforschungVakuumphysik Forschungszentrum JülichJülichGermany

Personalised recommendations