Interplay between Surface Roughening, Preroughening, and Reconstruction

  • Marcel den Nijs
Part of the NATO ASI Series book series (NSSB, volume 267)


Solid-on-solid models provide a comprehensive description of surface roughening, preroughening, and reconstruction. The origin and properties of the preroughening transition and disordered flat (DOF) phase are reviewed. The present experimental evidence for realizations of DOF phases in (110) facets of face-centered cubic (FCC) metals and in (111) facets of noble gas crystals is discussed. A chiral 4-state clock-step model is introduced to describe the deconstruction and roughening of missing row reconstructed (110) facets of FCC crystals. It is shown that a reconstructed rough phase is not possible. Instead roughening induces a simultaneous deconstruction transition, with central charge c=1.5 and both Ising and conventional roughening critical exponents. This, together with the experimental evidence suggests that at deconstruction Pt(110) becomes rough and simultaneously undergoes an incommensurate melting transition with respect to its reconstruction degrees of freedom.


Ising Model Step Height Reconstructed State Bloch Wall Reconstruction Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Rommelse and M. den Nijs, Phys. Rev. Lett. 59, 2578 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).Google Scholar
  3. 3.
    M. den Nijs, Phys. Rev. Lett.. 64, 435 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Campuzano et al., Surf. Sci. 162, 484 (1985);ADSCrossRefGoogle Scholar
  5. H. Derks et al., Surf. Sci. 188, L685 (1987); E. C. Sowa et al., Surf. Sci. 199, 174 (1988).Google Scholar
  6. 5.
    I. K. Robinson, E. Vlieg, and K. Kern, Phys. Rev. Lett. 63, 2578 (1989).ADSCrossRefGoogle Scholar
  7. 6.
    Modify the RSOS model as follows: Choose K directional dependent, K n K m. Let only K n change sign. Choose the next nearest neighbour interaction L between sites (n, m) and (n + 2, m). The transfer matrix leads to the same spin-1 quantum chain Hamiltonian as the RSOS model, eq.(2.1), in the so-called “time continuum limit” and therefore to the same phase diagram; see also ref.[2].Google Scholar
  8. 7.
    S. M. Foiles, Surf. Sci. 191, L779 (1987).ADSCrossRefGoogle Scholar
  9. 8.
    B. M. Ocko and S. G. J. Monchrie, Phys. Rev. B 38, 7378 (1988).ADSCrossRefGoogle Scholar
  10. 9.
    P. Zeppenfeld, K. Kern, R. David, and G. Comsa, Phys. Rev. Lett. 62, 63 (1989).ADSCrossRefGoogle Scholar
  11. 10.
    Y. Cao and E. Conrad, Phys. Rev. Lett. 64, 447 (1990).ADSCrossRefGoogle Scholar
  12. 11.
    E. Holub-Krappe et al., Surf. Sci. 188, 335 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    C. J. Barnes et al., Surf. Sci. 201, 108 (1988).ADSCrossRefGoogle Scholar
  14. 13.
    For a review see M. den Nijs, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. Lebowitz (Academic, London, 1987), Vol. 12.Google Scholar
  15. 14.
    H. van Beijeren, Phys. Rev. Lett. 38, 993 (1977).ADSCrossRefGoogle Scholar
  16. 15.
    For a review see J.D. Weeks, in Ordering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed, p. 293. Plenum Press, New. York (1980).Google Scholar
  17. 16.
    M. den Nijs, Phys. Rev. B 27, (1983) 1674.MathSciNetADSCrossRefGoogle Scholar
  18. 17.
    For a review see B. Nienhuis, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. Lebowitz (Academic, London, 1987), Vol. 11.Google Scholar
  19. 18.
    M. Kohmoto et al., Phys. Rev. B 24, 5229 (1981).ADSCrossRefGoogle Scholar
  20. 19.
    F. S. Rys, Phys. Rev. Lett. 56, 624 (1986).ADSCrossRefGoogle Scholar
  21. 20.
    J. Villain, D.R. Grempel and J. Lapujoulade, J. Phys. F 15, 809 (1985).ADSCrossRefGoogle Scholar
  22. 21.
    M.P.M. den Nijs, E.K. Riedel, E.H. Conrad and T. Engel, Phys. Rev. Lett. 55, 1689 (1985)ADSCrossRefGoogle Scholar
  23. M.P.M. den Nijs, E.K. Riedel, E.H. Conrad and T. Engel, Phys. Rev. Lett. 57, 1279 (1986).ADSCrossRefGoogle Scholar
  24. 22.
    The BCSOS model is equivalent to the spin-z quantum spin chain. As explained in section VI of ref.[2] this model has a DOF phase with the same type of properties as the RSOS model. The PR transition belongs to the same universality class.Google Scholar
  25. 23.
    J. Villain and I. Vilfan, Surf. Sci. 199, L165 (1988).ADSCrossRefGoogle Scholar
  26. 24.
    see e.g. O. Foda, Nucl. Phys. B 300, 611 (1988).Google Scholar
  27. 25.
    H.S. Youn and G.B. Hess, Phys. Rev. Lett. 64, 918 (1990).ADSCrossRefGoogle Scholar
  28. 26.
    J.Z. Larese and Q.M. Zhang private communication.Google Scholar
  29. 27.
    Da-ming Zhu and J.G. Dash, Phys. Rev. Lett. 57, 2959 (1986).ADSCrossRefGoogle Scholar
  30. 28.
    It is possible, but less likely that the intermediate phase is reconstructed instead of DOF, i.e., to enter the reconstructed phase via a first-order transition (the phase boundary to the right of point N in Fig. 1) and from there to follow a path of type 3.Google Scholar
  31. 29.
    Fig. 5 is the simplest theoretical phase diagram. The Ising critical points could just as well be triple points with first-order boundaries between them; and even more elaborate phase diagram diagrams with e.g. critical endpoints are theoretically allowed too. However, the second-order nature of the PR transition and also the experimentally observed complete wash-out of the steps in the isotherms make Fig. 5 more likely.Google Scholar
  32. 30.
    P. Zepenfeld et al. J. Physique 51 (1990)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Marcel den Nijs
    • 1
  1. 1.Department of Physics, FM-15University of WashingtonSeattleUSA

Personalised recommendations