Advertisement

Phase Transitions in Lipid Monolayers on Water: New Light on an Old Problem

  • P. Dutta
Part of the NATO ASI Series book series (NSSB, volume 267)

Abstract

Long before exfoliated graphite, organic materials provided an easy way to make monolayers. The familiar chains formed by linking -CH2- groups are hydrophobic, while a variety of organic groups (in particular, polar groups) are hydrophilic; when combined, for example into a saturated single-chain fatty acid CH3(CH2)nCOO H+, the resulting molecules will usually adopt one of three strategies to minimize their potential energy in an aqueous environment. They may form micelles, which are blobs with the hydrophilic head groups on the outside (in contact with water) and hydrophobic tails kept dry inside; they may form membranes, which are tail-to-tail bilayers with heads on both surfaces; or, if they are at an air-water interface, they will put their heads in the water and tails in the air. This last system is a Langmuir monolayer: you can easily make one in your kitchen sink.

Keywords

Arachidic Acid Langmuir Monolayer Pentadecanoic Acid Flat Section Hydrophilic Head Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    e.g. A. Pockels, Nature 43, 437 (1891)ADSGoogle Scholar
  2. 2.
    e.g. Lord Rayleigh, Phil. Mag. 48, 337 (1899)Google Scholar
  3. 3.
    I. Langmuir, J. Am. Chem. Soc. 39, 354 (1917)CrossRefGoogle Scholar
  4. 4.
    For a review see G.L. Gaines, Jr., Insoluble Monolayers at Liquid Gas Interfaces ( Interscience, New York, 1966 ).Google Scholar
  5. 5.
    N.R. Pallas and B.A. Pethica, Langmuir 1, 509 (1985)CrossRefGoogle Scholar
  6. 6.
    see, e.g., W.D. Harkins and L.E. Copeland, J. Chem. Phys., 10, 272 (1942)ADSCrossRefGoogle Scholar
  7. 7.
    P. Dutta, J.B. Peng, B. Lin, J.B. Ketterson. M. Prakash, P. Georgopoulos and S. Ehrlich, Phys. Rev. Lett., 58, 2228 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kjmr, J. Als-Nielsen, C.A. Helm, L.A. Laxhuber, and H. Möhwald, Phys. Rev. Lett. 58, 2224 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    B.M. Abraham, K. Miyano, S.Q. Xu and J.B. Ketteerson, Rev. Sci Instrum. 54, 213 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    B.M. Abraham, K. Miyano, J.B. Ketterson and S.Q. Xu, Phys. Rev. Lett. 51, 1975 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    K. Halperin, P. Dutta and J.B. Ketterson, Langmuir 5, 161 (1989)CrossRefGoogle Scholar
  12. 12.
    J.D. Swalen, J. Mol. Electronics 2, 155 (1986)ADSGoogle Scholar
  13. 13.
    Th. Rasing, Y.R. Shen, M.W. Kim and S. Grubb, Phys. Rev. Lett. 55, 2903 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    P. Guyot-Sionnest, J.R. Hunt and Y.R. Shen, Phys. Rev. Lett. 59, 1597 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    B.B. Sauer, Y.L. Chen, G. Zografi and H. Yu, Langmuir4, 111 (1988)Google Scholar
  16. 16.
    M. Lösche and H. Möhwald, Revs. Sci lnstrum. 55, 1968 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    A. Miller, W. Knoll and H. Möhwald, Phys. Rev. Lett. 56, 2633 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    W.M. Heckl, M. Lösche, A. Cadenhead and H. Möhwald, Eur. Biophys. J. 14,11 (1986)Google Scholar
  19. 19.
    A. Miller, W. Knoll, H. Möhwald and A. Ruaudel-Teixier, Thin So/id Films 133, 83 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    W.M. Heckl, A. Miller and H. Möhwald, Thin Solid Films 159, 125 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    S.G. Wolf, E.M. Landau, M. Lahav, L. Leiserowitz, M. Deutsch, K. Kjmr and J. Als-Nielsen, Thin Solid Films 159, 29 (1988); S.Grayer-Wolf, M. Deutsch, E.M. Landau, M. Lahav, L. Leiserowitz, K. Kjwr and J. Als-Nielsen, Science 242, 1286 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    B. Lin, T.M. Bohanon, M.C. Shih and P. Dutta, Langmuir 6, 1665 (1990)CrossRefGoogle Scholar
  23. 23.
    S. Barton, B. Thomas, E. Flom, S.A. Rice, B. Lin, J.B. Peng, J.B. Ketterson and P.Dutta, J. Chem. Phys. 89, 2257 (1988)ADSGoogle Scholar
  24. 24.
    K.Kjmr, J. Als-Nielsen, C.A. Helm, P. Tippman-Krayer and H. Möhwald, J. Phys. Chem. 93, 3200 (1989)CrossRefGoogle Scholar
  25. 25.
    J. Als-Nielsen and K. Kjmr, in “Phase transitions in soft condensed matter”, edited by T. Riste and D. Sherrington ( Plenum Press, New York, 1989 )Google Scholar
  26. 26.
    see, e.g. G. Ungar, J. Phys. Chem. 87, 689 (1983)Google Scholar
  27. 27.
    T.M. Bohanon, B. Lin, M.C. Shih, G.E. Ice and P. butta, Phys. Rev. B 41, 4846 (1990)Google Scholar
  28. 28.
    B. Lin, M.C. Shih, T.M. Bohanon, G.E. Ice and P. Dutta, Phys. Rev. Lett. 65, 191 (1990)ADSCrossRefGoogle Scholar
  29. 29.
    R.M. Kenn, C. Böhm, A.M. Bibo, I.R. Peterson, H. Möhwald, K. Kjær and J. Als-Nielsen, submitted to J. Phys. Chem.Google Scholar
  30. 30.
    M. Shih, T.M. Bohanon, J. Mikrut and P. Dutta, in preparationGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. Dutta
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations