Probing Film Phase Transitions Through Measurements of Sliding Friction

Part of the NATO ASI Series book series (NSSB, volume 267)


The sliding friction of a molecularly thin film adsorbed on a solid surface is a topic which is presently quite underdeveloped. One’s ability to measure this quantity allows a wealth of new information to become available in a variety of areas such as Darcy flow in dendritic film growth, the “no-slip” boundary condition of fluid hydrodynamics and the study and identification of thin film phase transitions. The purpose of this chapter is to describe how sliding friction measurements can be carried out and in particular be utilized for the identification and characterization of melting and surface melting transitions occurring within thin adsorbed films. At present, these measurements are providing more insight to the microscopic origins of friction than to the actual study of the phase transitions. Nonetheless, as the details of the frictional force laws which govern slippage become more developed, the emphasis should shift back towards characterization of phase transitions.


Frequency Shift Gold Film Acoustic Impedance Adsorbed Film Gold Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Maxwell, Philos. Trans. R. Soc. London, 157, 49 (1867)CrossRefGoogle Scholar
  2. 2.
    H. Helmholtz and X. Piotrowski, Sitz. der k. Akad Wien, 40, (1860)Google Scholar
  3. 3.
    W.C. D. Whetham, read by J.J. Thompson, Phil. Trans. R. Soc. London, 181, 559 (1890)ADSCrossRefGoogle Scholar
  4. 4.
    A. Khurana, Physics Today 41 (5), 17 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids, Part II ( Clarendon, Oxford, 1964 )Google Scholar
  6. 6.
    J.N. Israelachvilli, Acc. Chem. Res. 20, 415 (1987)CrossRefGoogle Scholar
  7. 7.
    J.N. Israelachvilli, P.M. McGuiggan and A.M. Homola, Science 240, 189 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    J. Van Alsten and S. Granick. Phys. Rev. Lett., 61, 2570 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    J. Koplich, J. Banavar, J. Willemsen, Phys. Rev. Letters, 60, 1282 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    P.A. Thompson and M.O. Robbins, Phys. Rev. Lett. 63, 766 (1989).ADSCrossRefGoogle Scholar
  11. M.O. Robbins and P.A. Thompson, Phys. Rev. A 41, 6830 (1990)ADSCrossRefGoogle Scholar
  12. 11.
    J. Krim Bull. Am. Phys. Soc, 33, No 3, 436 (1988)Google Scholar
  13. 12.
    J. Krim and A. Widom, Phys. Rev. B, 38, 12184 (1988); A. Widom and J. Krim, Phys. Rev. B 34, R4 (1986)Google Scholar
  14. 13.
    E.T. Watts, J. Krim and A. Widom, Phys. Rev. B 41, 3466 (1990)ADSCrossRefGoogle Scholar
  15. 14.
    Amontons, Mem. Acad. Roy. Soc., 206 (1699)Google Scholar
  16. 15.
    J.B. Marion, Classical Dynamics ( Academic Press, New York, 1970 ), p. 53Google Scholar
  17. 16.
    A.W. Adamson, Physical Chemistry of Surfaces, ( Wiley, New York, 1982 )Google Scholar
  18. 17.
    C.D. Stockbridge, Vacuum Microbalance Techniques,(Plenum, New York, 1966) Vol. 5Google Scholar
  19. 18.
    E.M. Lifshitz, Fluid Mechanics, Vol. 6 of Course of Theoretical Physics ( Perg-amon, London, 1959 ), pp. 88–90.Google Scholar
  20. 19.
    M.E. Frerking, Crystal Oscillator Design and Temperature Compensation ( Van Nostrand, New York, 1978 ) pp 67–68Google Scholar
  21. 20.
    This is conservative. The actual minimum will depend on oscillator stability.Google Scholar
  22. 21.
    J. Krim, E.T. Watts and J. Digel, J. Vac. Sci. Tech. A, (1990) in pressGoogle Scholar
  23. 22.
    J. Krim and R. Chiarello, to be publishedGoogle Scholar
  24. 23.
    A. Widom and J. Krim, to be publishedGoogle Scholar
  25. 24.
    J. Krim and R. Chiarello, J. Vac. Sci. Tech. A, in pressGoogle Scholar
  26. 25.
    J. Krim, J. Suzanne and J.G. Dash, Phys. Rev. Lett. 52, 635 (1984)ADSCrossRefGoogle Scholar
  27. 26.
    A. Thomy and X. Duval, in Adsorption at the Gas-Solid and Liquid-Solid Interface, J. Rouquerol and K.S.W. Sing, Eds. ( Elsevier, Amsterdam, 1982 )Google Scholar
  28. 27.
    P. Pfeifer, Y.J. Wu, M.W. Cole and J. Krim, Phys. Rev. Lett. 62, 1997 (1989)Google Scholar
  29. 28.
    P. Pfeifer, J. Kenntner, J.L. Wragg, J. West, H.W. White, J. Krim and M.W. Cole, Bull. Am. Phys. Soc. 34, 728 (1989)Google Scholar
  30. 29.
    J.B. Sokoloff, Phys. Rev. B 42, 760 (1990)ADSCrossRefGoogle Scholar
  31. 30.
    W. Zhong and D. Tomanek, Phys. Rev. Lett. 64, 3054 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Krim
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBostonUSA

Personalised recommendations