A Review of Cubic BN and Related Materials

  • R. C. DeVries
Part of the NATO ASI Series book series (NSSB, volume 266)


The composition tetrahedron B-N-Si-C is a convenient way to define the scope of this review (Fig. 1). Within this system are the hardest materials known, diamond and cubic BN (Borazon), and if hydrogen were added to each of these, the scheme would then include the amorphous hydrogenated diamondlike phases which are also a subject of this seminar. Less well characterized are the ternary compositions in the system B-C-N, and the interesting phase, C3N4, which is known in the graphitic form but is still a theoretical concept as far as a 3-D harder-than-diamond material is concerned. Sic and Si3N4 are well-known materials in the hard materials and ceramic industries. The primary emphasis here will be on the synthesis of cubic BN and other phases in the B-N-C composition triangle from both high temperature-high pressure (HPHT) and low pressure processes. Synthesis of films and crystals of SiC will be considered briefly.


Silicon Carbide Boron Nitride Boron Carbide Hexagonal Boron Nitride Graphitic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Wentorf, Jr., Cubic form of boron nitride, J. Chem. Phys. 26: 956 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    R. H. Wentorf, Jr., Preparation of semiconducting cubic boron nitride, J. Chem. Phys. 36: 1990–91 (1962)ADSCrossRefGoogle Scholar
  3. 3.
    M. Neuberger, Boron Nitride, Data Sheet DS-158, Nov., 1967; Electronic Properties Information Center, Hughes Aircraft Co., Culver City, CA.; AFML Contract AF 33(615)-2460, Project 7381, Task 738103Google Scholar
  4. 4.
    V. N. Bakul, A. I. Brikhna, Composition, structure and properties of cubic boron nitride, Sin. Almazy 1: 36–42 (1971)Google Scholar
  5. 5.
    R. C. DeVries, Cubic boron nitride. Handbook of properties, GE CRD Report No. 72CRD178, June 1972Google Scholar
  6. 6.
    Gmelin Handbuch der anorganishen Chemie, Band 13, Boron nitride, pp. 9–11, 41–43, 50–54, 63–65, 83 (1974)Google Scholar
  7. 7.
    A. V. Kurdyumov, A. N. Pilyankevich, Phase Transformations of Carbon and Boron Nitride, Naukova Dumka, Kiev (1979)Google Scholar
  8. 8.
    E. Rapoport, Cubic boron nitride, Ann. Chim. 10:607–38 (1985)Google Scholar
  9. 9.
    R. R. Wills, Wurtzitic boron nitride-a review, Int. J. High Technol. Ceram. 1: 139–53 (1985)CrossRefGoogle Scholar
  10. 10.
    C. A. Brookes, The mechanical properties of cubic boron nitride — a perspective view, Inst. Phys. Conf. Ser. No. 75: Chapter 3. Paper presented at 2nd Int. Conf. Sci. Hard Mater., Rhodes; Adam Hilger Ltd, 1986Google Scholar
  11. 11.
    F. P. Bundy, R. H. Wentorf, Jr., Direct transformation of hexagonal boron nitride to denser forms, J. Chem. Phys. 38: 1144–49 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    F. R. Corrigan, Epitaxial relationships for the high pressure transitions of boron nitride, GE internal report, 1975; Direct conversion process for making cubic boronnitride from pyrolytic boron nitride, U.S. Patent 4,188,194; 2/12/1980; filed 7/1/1977.Google Scholar
  13. 13.
    F. P. Bundy, Pressure-temperature phase diagram of elemental carbon, Physica A 156: 169–78 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    T. Kabayama, T. Ikezawa, Synthesis of cBN, paper given at 15th High Pressure Meeting, Fukuoka, Japan, 10/21/73Google Scholar
  15. 15.
    R. H. Wentorf, Jr., Process for making cubic crystal boron nitride, U.S. Patent 3,150,929; 9/20/64; filed 1/17/63Google Scholar
  16. 16.
    R. C. DeVries, J. F. Fleischer, Solution-precipitation process for manufacturing cubic boron nitride abrasive tools, U.S. Patent 3,918,931; 11/11/75; filed 12/17/73Google Scholar
  17. 17.
    D. G. Flom, R. C. DeVries, W. R. Reed, CBN/Diamond Tool Science, Part 2, Characterization and testing of single point cutting tools, GE R and D Center Report 89CRD90, April, 1989Google Scholar
  18. 18.
    S. Hirano, T. Yamaguchi, S. Naka, Effects of A1N additions and atmosphere on the synthesis of cubic boron nitride, J. Am. Ceram. Soc., 64: 734–36 (1981)CrossRefGoogle Scholar
  19. 19.
    H. M. Strong, R. H. Wentorf, Jr., The growth of large diamond crystals, Naturwissenschaften 59: 1–7 (1972)ADSCrossRefGoogle Scholar
  20. 20.
    H. M. Strong, R. E. Tuft, Method and high pressure reaction vessel for quality control of diamond growth on diamond seed, U.S. Patent 4,034,066; 7/5/77; filed 11/2/73Google Scholar
  21. 21.
    J. I. Koivula, C. W. Fryer, Identifying gem-quality synthetic diamonds: and update, Gems and Gemology XX: 146–158 (1984)Google Scholar
  22. 22.
    J. E. Shigley, E. Fritsch, C. M. Stockton, J. I. Koivula, C. W. Fryer, R. E. Kane, The gemological properties of the Sumitomo gem-quality synthetic yellow diamonds, Gems and Gemology XXII: 192–208 (1986)Google Scholar
  23. 23.
    J. E. Shigley, E. Fritsch, C. M. Stockton, J. I. Koivula, C. W. Fryer, R. E. Kane, D. R. Hargett, C. W. Welch, The gemological properties of the De Beers gem-quality synthetic diamonds, Gems and Gemology XXIII: 187–206 (1987)Google Scholar
  24. 24.
    T. Kobayashi, K. Susa, A method for growing cubic boron nitride single crystals, Japanese Patent No. Sho 53(1978)-106698; 9/16/78; filed 3/2/77Google Scholar
  25. 25.
    O. Mishima, S. Yamaoka, O. Fukunaga, Crystal growth of cubic boron nitride by temperature difference method at 55 Kb and 1800°C., J. Appl. Phys. 61: 2822–25 (1987)ADSCrossRefGoogle Scholar
  26. 26.
    O. Mishima, J. Tanaka, S. Yamaoka, O. Fukunaga, High-temperature cubic boron nitride p-n junction diode made at high pressure, Science 238: 181–83 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    S. Yazu, H. Sumiya, J. Degawa, Method of synthesizing cubic system boron nitride, EP 220,462; 5/6/87; filed 9/24/85Google Scholar
  28. 28.
    M. Kagamida, H. Kanda, M. Akaishi, A. Nukui, T. Osawa, S. Yamaoka, Crystal growth of cubic boron nitride using Li3BN2 solvent under high temperature and pressure, J. Crystal Growth 94: 261–9 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    R. H. Wentorf, Jr., W. A. Rocco, Cubic boron nitride/sintered carbide abrasive bodies, U. S. Patent 3,767,371; 10/23/73; filed 7/1/71Google Scholar
  30. 30.
    F. R. Corrigan. 1, Eds. K. D. Timmerhaus, M. S.Barber, Plenum Press, N.Y. (1977)Google Scholar
  31. 31.
    S.P.S. Arya and A. D’Amico, Preparation, properties, and applications of boron nitride thin films, Thin Solid Films 157: 267–82 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    R. C. Vickery, Synthesis of boron phosphide and nitride, Nature 184:268 (1959);ADSCrossRefGoogle Scholar
  33. 32a.
    C.Hauser, Coating metallic or ceramic articles with cubic boron nitride, Swiss Patent CH 645,596; 10/15/84; filed 11/14/80Google Scholar
  34. 33.
    V. N. Gashtold et al, Preparation of films of cubic boron nitride by high frequency sputtering, Elektronnaya Tekhnika 4 (Series XII): 58–68 (1970)Google Scholar
  35. 34.
    M. Satou, F. Fujimoto, Formation of cubic boron nitride films by boron evaporation and nitrogen ion beam bombardment, Jpn. Journ. Appl. Phys. 22: L171 (1983)ADSCrossRefGoogle Scholar
  36. 35.
    C. Weissmantel, K. Bewilogue, K. Breuer, D. Dietrich, U. Ebersbach, H.-J. Erler, G. Rau, G. Reisse, Preparation and properties of hard i-C and i-BN coatings, Thin Solid Films 96: 31–44 (1982)ADSCrossRefGoogle Scholar
  37. 36.
    M. Sokolowski, Deposition of wurtzite type boron nitride layers by reactive pulse plasma crystallization, J. Crystal Growth 46: 136–138 (1979)ADSCrossRefGoogle Scholar
  38. 37.
    M. Sokolowski, A. Sokolowska, A. Rusek, Z. Romanowski, B. Gokieli, M. Gojewska, Properties and growth of beta BN (Borazon) layers from a pulsed plasma under reduced pressure, J. Crystal Growth 52: 165–167 (1981)ADSCrossRefGoogle Scholar
  39. 38.
    A. Sokolowska, M. Wronikowski, The phase diagram (p, T, E) of boron nitride, J. Crystal Growth 76: 511–13 (1986)ADSCrossRefGoogle Scholar
  40. 39.
    D. V. Fedoseev, I. G. Varshayskaya, A. V. Lavrent’ev, B. V. Deryaguin, V. L. Bukhovets, V. V. Matveev, V. L. Ruzinow, T. A. Karpukhina, Phase transitions of small solid particles when heated in a laser, Dokl. Akad. Nauk SSSR 270: 918–22 (1983)Google Scholar
  41. 40.
    M. Alam, T. Deb Roy, R. Roy, High pressure phases of SiO2 made in air by Fedoseev=Derjaguin laser process, Appl. Phys. Lett. 53: 1687–89 (1988)ADSCrossRefGoogle Scholar
  42. 41.
    D. V. Fedoseev, B. V. Derjaguin, I. G. Varshayskaya, A. V. Lavrent’ev, Homogeneous formation of metastable phases of carbon at high supersaturation, Carbon 21: 243–46 (1983)CrossRefGoogle Scholar
  43. 42.
    G. Kessler, H.-D. Bauer, W. Pompe, H.-J. Scheike, Laser pulse vapour deposition of polycrystalline wurtzitetype BN, Thin Solid Films 147: L45–50 (1987)CrossRefGoogle Scholar
  44. 43.
    G. L. Doll, J. A. Sell, L. Salamanca-Riba, A. K. Ballal, Laser deposited cubic boron nitride films, submitted to Appl. Phys. Letters, 5/1/90Google Scholar
  45. 44.
    Y. Matsui, Small particles of cubic boron nitride prepared by electron irradiation of hexagonal boron nitride in a transmission electron microscope, J. Crystal Growth 66: 243–47 (1984)ADSCrossRefGoogle Scholar
  46. 45.
    H. Saitoh, T. Ishiguro, Y. Ichinose, Synthesis of cubic boron nitride films by RF plasma CVD thermally activated with tungsten filament, ISPC-8 Tokyo, 1987, Paper P-086Google Scholar
  47. 46.
    H. Saitoh, T. Hirose, H. Matsui, Y. Hirotsu, Y. Ichinose, Synthesis of BN films by the plasma CVD with various solids: BH3NH3, H3BO3, and NaBH4, Surface and Coatings Technol. 39 /40: 265–73 (1989)CrossRefGoogle Scholar
  48. 47.
    P. T. B. Shaffer, The SiC phase in the system SiC-B4CC, Mater. Res. Bull. 213–20 (1969)Google Scholar
  49. 48.
    R. M. Chrenko, R. E. Tuft, H. M. Strong, The transformation of the state of nitrogen in diamond, Nature 27: 141–44 (1977)ADSCrossRefGoogle Scholar
  50. 49.
    R. P. Messmer, G. D. Watkins, Linear combination of atomic orbital–molecular orbital treatment of the deep defect level in a semiconductor: nitrogen in diamond, Phys. Rev. Lett. 25: 656–59 (1970)ADSCrossRefGoogle Scholar
  51. 50.
    A. K. Butylenko, G. V. Samsonov, I. I. Timofeeva, G. N. Makarenko, Doping of cubic boron nitride with carbon, Pis’ma Zh. Tekh. Fiz. 3: 186–8 (1977)Google Scholar
  52. 51.
    N. N. Sirota, M. M. Zhuk, Solid solutions in the boron nitride-carbon system at high pressures and temperatures, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 1979: 122–5Google Scholar
  53. 52.
    Showa Denko K. K., Cubic boron nitride powder, JP 83,120,505; 7/18/83; filed 1/6/82Google Scholar
  54. 53.
    H. Sumya, High-hardness, cubic boron nitride sintered body and its preparation, JP 89,208,371; 8/22/89; filed 2/15/88Google Scholar
  55. 54.
    A. L. Liu, R. M. Wentzcovitch, M. L. Cohen, Atomic arrangement and electronic structure of boron carbide nitride (BC2N), Phys. Rev. B: 39: 1760–5 (1989)ADSCrossRefGoogle Scholar
  56. 55.
    N. Setaka, private communication (1988)Google Scholar
  57. 56.
    J. P. LaFemina, Electronic band structure of graphite-boron nitride alloys, J. Phys. Chem. 94: 4346–51 (1990)CrossRefGoogle Scholar
  58. 57.
    A. Badzian, T. Niemyski, S. Appenheimer, E. Olkusnik, Crystal structure in the boron-carbon-nitrogen system, Khim. Svyaz Poluprov. Polumetallakh 1972: 362–6Google Scholar
  59. 58.
    R. B. Kaner, J. Kouvetakis, C. E. Warble, M. L. Sattler, N. Bartlett, Boron-carbon-nitrogen materials of graphite-like structure, Mat. Res. Bull. 22: 399–404 (1987)CrossRefGoogle Scholar
  60. 59.
    M. Yamada, Semiconductor device having covalently bonded boron carbide nitride passivation film, JP 88,129,631: 6/2/88; filed 11/2/86Google Scholar
  61. 60.
    A. W. Moore, S. L. Strong, G. L. Doll, M. S. Dresselhaus, I. L. Spain, C. W. Bowers, J. P. Issi, L. Piraux, Properties and characterization of codeposited boron nitride and carbon materials, J. Appl. Phys. 65: 5109–18 (1989)ADSCrossRefGoogle Scholar
  62. 61.
    T. Ya. Kosolapova, G. N. Makarenko, T. I. Serebryakova, E. V. Prilutskii, O. T. Khorpyakov, O. I. Chernysheva, Boron carbonitride. I. Conditions for preparing boron carbonitride, Porosh. Met. 11: 27–33 (1971)Google Scholar
  63. 62.
    T. M. Besmann, Chemical vapor deposition in the silicon-carbon and boron-carbon-nitrogen systems, Report (D3REP3) 1988, ORNL/TM-10884, 26 pp.Google Scholar
  64. 63.
    T. W. Klaus, Phototropy of boron nitride, Z. Physik. Chem. 228: 1–4 (1965)Google Scholar
  65. 64.
    Anon., Multiband luminescence of layer-structured hexagonal boron nitride crystals, Muki Zaiken Nyusu 41: 3 (1976)Google Scholar
  66. 65.
    E. Tiede, H. Tomaschek, The activating element in luminous boron nitride, Z. anorg. allgem. Chem. 147: 111–22 (1925)CrossRefGoogle Scholar
  67. 66.
    A. W. Moore, L. S. Singer, Electron spin resonance in carbon doped boron nitride, J. Phys. Chem. Solids 33: 343: 56 (1972)Google Scholar
  68. 67.
    T. V. Andreeva, T. V. Dubovik, Electrically insulating materials for linings and holders of high-pressure chambers, Dielektr. Poluprovodn. 5: 7–12 (1974)Google Scholar
  69. 68.
    W. S. Rees, Jr., D. Seyferth, Preparation, characterization and pyrolysis of decaborane (14)-based polymers: boron carbide/boron nitride and boron nitride procedures, Ceram. Eng. Sci. Proc. 10: 837–45 (1989)CrossRefGoogle Scholar
  70. 69.
    R. J. Wedlake, A. L. Penny, Hard material, Ger. Offen. 2,806,070; 8/17/78; filed 2/16/77Google Scholar
  71. 70.
    Mitsubishi Metal Corp., Sintered tool material at an ultrahigh pressure JP 80 67,570 (571,574,575,576); 5/21/80; filed 11/14/78Google Scholar
  72. 71.
    A. Badzian, Cubic boron nitride-diamond mixed crystals, Mater. Res. Bull. 16: 1385–93 (1981)CrossRefGoogle Scholar
  73. 72.
    A. Badzian, High-pressure synthesis of diamond-type crystals and their atomic structure, Pr. ITME (PRITED) 1984, 12, 65 pp.Google Scholar
  74. 73.
    R. Haubner, Deposition of thermal CVD low pressure diamond on cubic BN, RM and HM, June 1990: 70–76Google Scholar
  75. 74.
    W. E. Pickett, Thin superlattices and band-gap discontinuities: the (110) diamond-boron nitride interface, Phys. Rev. B 38: 1316–22 (1988)ADSCrossRefGoogle Scholar
  76. 75.
    W. R. L. Lambrecht, B. Segall, Electronic structure of (diamond C)/(sphalerite BN) (110) interfaces and superlattices, Phys. Rev. B 40 9909–19 (1989)ADSCrossRefGoogle Scholar
  77. 76.
    P. T. B. Shaffer, E. D. Whitney, Silicon carbide containing boron and nitrogen in solid solution, US Patent 3,554,717: 1/12/71; filed 1/30/68Google Scholar
  78. 77.
    Silicon Carbide, A High Temperature Semiconductor, Eds. J. R. O’Connor, J. Smiltens, Proc. of Conf. on Sic, Boston, MA., 4/2–3/59, Pergamon Press, N. Y. (1960)Google Scholar
  79. 78.
    J. A. Lely, Darstellung von Einkristallen von Siliciumcarbide and Beherrschung von Art and Menge der eingebauten Verunreinigungen, Deut. Ker. Gesellschaft. e.V., 32: 229–50 (1955)Google Scholar
  80. 79.
    K. M. Hergenrother, S. E. Mayer, A. I. Mlaysky, Epitaxial and single crystal growth on to silicon carbide seeds, pp. 60–66 in Silicon Carbide, A High Temperature Semiconductor, Eds. J. R. O’Connor, J. Smiltens; Proc. of Conf. on Silicon Carbide, Boston, MA. 4/2–3/59; Pergamon Press, N.Y., 1960Google Scholar
  81. 80.
    Yu. M. Tairov, V. F. Tsvetkov, Investigation of growth process of ingots of silicon carbide single crystals, J. Crystal Growth 43: 209–12 (1978)ADSCrossRefGoogle Scholar
  82. 81.
    Yu. M. Tairov, V. F. Tsvetkov, General principles of growing large single crystals of various silicon carbide polytypes, J. Crystal Growth 52: 146–150 (1981)ADSCrossRefGoogle Scholar
  83. 82.
    G. Ziegler, P. Lanig, D. Theis, C. Weyrich., Single crystal growth of Sic substrate material for blue light emitting diodes, IEEE Transactions on Electron Devices, Vol. ED-30: 277–81 (1983)Google Scholar
  84. 83.
    R. F. Davis, Silicon carbide and diamond semiconductor thin films: growth, defect analysis and device development, paper presented at Workshop on Science and Technology of Diamond Films, Quail Hollow Resort and Conference Center, Concord, Ohio, 5/20–24/90Google Scholar
  85. 84.
    W. C. Nieberding, Researchers develop long-sought SiC crystal growth techniques, Ind. Res. and Dev. Sept. 1983, pp. 148–50Google Scholar
  86. 85.
    S. Nishino, J. A. Powell, H. A. Will, Production of large area single crystal wafers of cubic Sic for semiconductor devices, Appl. Phys. Lett. 42: 460–62 (1983)ADSCrossRefGoogle Scholar
  87. 86.
    J. A. Powell, Silicon carbide, a high temperature semiconductor, Tech. Memo for CECOM ‘83, Cleveland, Ohio, 10/4–6/83Google Scholar
  88. 87.
    A. Y. Liu, M. L. Cohen, Prediction of new low compressibility solids, Science 245: 841–2 (1989)ADSCrossRefGoogle Scholar
  89. 88.
    A. Y. Liu, M. L. Cohen, Structural properties and electronic structure of low-compressibility materials: β -Si3N4 and hypothetical β -C3N4, Phys. Rev. B. 41: 10727–34 (1990)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. C. DeVries
    • 1
  1. 1.Burnt HillsUSA

Personalised recommendations