Origin and Evolution of the Science and Technology of Diamond Synthesis in the USSR

  • Boris V. Spitsyn
Part of the NATO ASI Series book series (NSSB, volume 266)


Research and industrial development of methods of diamond synthesis at ultra-high pressures and high temperatures (the UHP/HT methods) have not reduced the interest toward developing other methods of diamond synthesis. There are several reasons for this, and the most important, whose value can only grow in the foreseeable future, are as follows.


Diamond Film Diamond Crystal Natural Diamond Diamond Surface Diamond Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. McSkimin and W.L. Bond, Elastic moduli in diamond, Phvs. Rev 105: 116 (1957).CrossRefGoogle Scholar
  2. 2.
    S.I. Novikova, Thermal expansion of diamond from 25 to 750 K, Fiz Tverd Tela (Leningrad) 2: 1617 (1960) (in Russian).Google Scholar
  3. 3.
    J.E. Field, ed., “The Properties of Diamond,” Academic Press, London (1979).Google Scholar
  4. 4.
    R. Berman, F.E. Simon, and J.M. Ziman, The thermal conductivity of diamond at low temperatures, Proc IL Soc. London, Ser,. A 220: 171 (1953).Google Scholar
  5. 5.
    R. Berman, E.L. Foster, and J.M. Ziman. The thermal conductivity of dielectric crystals: the effect of isotopes, Proc. R. Soe. Londori,Ser. A 237: 344 (1956).ADSCrossRefGoogle Scholar
  6. 6.
    C.D. Clark, P.I. Dean, and P.V. Harris, Intrinsic edge absorption in diamond, Froc. R Soc. Londoxl, - A 277: 312 (1964).Google Scholar
  7. 7.
    F.G. Champion, “Electronic Properties of Diamonds,” Butter-worths, London (1263).Google Scholar
  8. 8.
    A.G. Redfield, Electronic Hall effect in diamond, Ploys, Rev, 94: 526 (1954).CrossRefGoogle Scholar
  9. 9.
    V.S. Vavilov, A.A. Gippius and E.A. Konorova. Electronic and process in diamond. Moscow, “Nauka” (1985) ( Russ).Google Scholar
  10. 10.
    B.V. Spitsyn, Crystal growth under thermodynamically metastable conditions, in: “Growth of Crystals,” 13:58, Plenum Press, New York(1986).Google Scholar
  11. 11.
    J. Lander and J.J. Morrison, Low energy electron diffraction study of the (111) diamond surface, Sufs aua. 4: 241 (1966).Google Scholar
  12. 12.
    J.A. Brinkman, C.J. Meechan, and H.M. Dieckamp, “Method for Artificial Synthesis of Diamond,” US Patent N3, 175, 885, filed on July 1, 1960.Google Scholar
  13. 13.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, “’Thermodynamic Properties of Elements”, US Atomic Energy Commission with Assistance of the American Society for Metals, MetalsPark, Ohio (1973).Google Scholar
  14. 14.
    B.V. Derja..zi.n and D.V. Fedoseyev, “Growth of Diamond and Graphite from the Gaseous Phase,” Nauka., Moscow (1977) (in Russian).Google Scholar
  15. 15.
    A.G. Shenston,. Sstate of carbon. Phva Rev 72: 441 (1947)Google Scholar
  16. 16.
    B.V. Spitsyn and B.V. Derjaguin, “A Technique of Diamond Growth on a Diamond’s Face,” USSR Inventor’s Certificate N339, 134 (1956) filed on July 10, 1956 (in Russian).Google Scholar
  17. 17.
    W.G. Eversole, “Synthesis of Diamond,” US Patent N3, 030, 187 (1962), filed July 23, 1958.Google Scholar
  18. 18.
    W.G. Eversole, “Synthesis of Diamond,” US Patent 3, 030, 188 (1962), filed July 23, 1958.Google Scholar
  19. 19.
    M.E. Belitsky, Ph.D. thesis, Chemical Department of Moscow State University (1970) (in Russian).Google Scholar
  20. 20.
    B.V. Der.jagin. D.V. Fedoseev, V.M. Lukyanovich, B.V. Spitsyn, V.A.Ryabov. and A.V. Lavrentyev. Filamentary diamond crystals. J. Cryst. Growth, 2: 380 (1968).CrossRefGoogle Scholar
  21. 21.
    B.V. Derjagin, L.L. Bouilov, V.M. Zubkov, A.A. Kochergina and D.V. Fedoseev. On filamentary diamond crystals,Itristalografia 14: 535 (1969).Google Scholar
  22. 22.
    B.V. Derjagin, B.M. Lukyanovich U.V. Fedoseev at al. About filamentary diamond crystals, Ihokl„ AN SSSR (Russ.) 181: 1094 (1968).Google Scholar
  23. 23.
    Brit. Pat N 1001308, Method and apparatus for producing crystalline structures (1963).Google Scholar
  24. 24.
    B.V. Spitsyn and G.G. Lopatina, An optical furnace, in: Proc. All-Union conf. on thermophys, prop. of substances at high temperatures. 1:468,Novosibirsk, July 25 to 30, 1966, Moscow, (1969).Google Scholar
  25. 25.
    J.C. Satya, P.S. Shauhan, J.C. Angus, and N.C. Gardner, Kinetics of carbon deposition on diamond powder, s Appl. Phys,. 47: 4746 (1976).Google Scholar
  26. 26.
    P.A. Tesner, A.E. Gorodetsky, E.V. Denisevich, A.P. Zakharov, and T.V. Tekunova, Epitaxial growth of diamond from methane at atmospheric pressure, Dokl Akan. NNuk. 222: 1384 (1975) (in Russian).Google Scholar
  27. 27.
    B.V. Derjaguin and U_V. Fedoseyev, Epitaxial synthesis of diamond in the metastable region, r Kliim,. 39: 1661 (1970) (in Russian).Google Scholar
  28. 28.
    B.V. Spitsyn, Chemical crystallization of diamond from activated vapor phase, Jo. Crvst, growth 99: 1162 (1989).ADSCrossRefGoogle Scholar
  29. 29.
    B.V. Spitsyn and A.V. Smolyaninov. USSR Author’s Certificate N 987912, “Method of diamond layer growing”, filed April 21, 1971.Google Scholar
  30. 30.
    B.V. Derjaguin, B.V. Spitsyn, et al., in: “2nd USSR Symposium on Growth of Crystals and Films of Semiconductor Compounds. Abstracts,”Novosibirsk (1969) (in Russian), pp. 36–37.Google Scholar
  31. 31.
    B.V. Spitsyn. “On the thermodynamics and kinetics of chemical crystallization of diamond, in: ”Proc. 4th USSR Conf. on Crystal Growth,“ Part I, Yerevan Univ. Press, Yerevan (1972) (in Russian). p. 97.Google Scholar
  32. 32.
    B.V. Spitsyn, L.L. Bouilov, and B.V. Derjaguin, Vapor growth of diamond on diamond and other surfaces, L çryst Growth 52: 219 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    B.V. Derjaguin, D.V. Fedoseyev, V.P. Varnin, A.E. Gorodetsky. A.P. Akharov, and I.G. Teremetskaya, Growth of polycrystalline diamond films from the gas phase. ß Ek U- Tec E. iz. 69: 1250 (1975) (in Russian).Google Scholar
  34. 34.
    L.I. Avramenko, Reaction between H atoms and C, 2h. Fiz. Khim. 20: 1299 (1946) (in Russian).Google Scholar
  35. 35.
    J.C. Angus, N.C. Gardner, et al., Growing of semiconductor diamond at subatmospheric pressure,intetich.,. Aimazy No. 6: 38 (1971) (in Russian).Google Scholar
  36. 36.
    S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Vapor deposition of diamond particles from methane, aria Appl, Phvs,. Part 2 21: 183 (1982).Google Scholar
  37. 37.
    M. Kamo, Y. Sato. S. Matsumoto, and N. Setaka, Diamond synthesis from gas phase in microwave plasma, I Crvst. Growth 62: 642 (1983).CrossRefGoogle Scholar
  38. 38.
    K.E. Spear and M. Frenklach, Mechanisms for (VD at crystalline diamond, in: “Proc. 19th Biennial Conf. on Carbon,” Extended Abstracts,Penn. State Univ (1980), p. 380.Google Scholar
  39. 39.
    A. Badzian, B. Simonton, T. Badzian, R. Messier, K.E. Spear, and R. Roy, Vapor deposition synthesis at diamond films, Proc. PIE-Int,goo, Opt. E 683: 127 (1986).Google Scholar
  40. 40.
    P.K. Bachmann, W. Drawl, D. Knight, R. Weimer, and R. Messier, Diamond nucleation and growth in bell jar microwave plasma CVD reactor, in: “Extended abstracts: Diamond and Diamond-like Materials Synthesis,” G.H. Johnson, A. Badzian, and M. Geis, eds., MRS, Pittsburgh (1988), p. 99.Google Scholar
  41. 41.
    P.O. Joffreau, R. Haubner, and B. Lux, Low-pressure diamond growth on refractory metals, in: Extended abstracts: Diamond and Diamond-like Materials Synthesis,“ G.H. Johnson, A. Badzian, and M. Geis,eds., MRS, Pittsburgh (1288), p. 15.Google Scholar
  42. 42.
    L.D. Kislovsky and B.V. Spitsyn, On the inclusion of hydrogen in synthetic diamond films, Kristalloarafiva 25: 414 (1980) (in Russian).Google Scholar
  43. 43.
    L.G. Karaseva, T.A. Karpukhina, and B.V. Spitsyn, ESR spectrum of atomic hydrogen in synthetic diamond, Soviet Physical Chemistry, 1983: 302.Google Scholar
  44. 44.
    A.E. Alexenko, VS. Vavilov, B.L Derjaguin, M.A. Gukosyan, T.A. Karatygina, E.A. Konorova, V.F. Sergienko, B.V. Spitsyn, and S.D. Tkatchenko, Charge transfer and acceptor nature in semiconducting epitaxial diamond layers, Doki— Akad Nank. 233: 334 (1977).Google Scholar
  45. 45.
    B.V. Derjaguin, LL. Bouilov et al., Structure and properties of diamond films grown on heterogeneous substrates, Pokl Akad. blank SR 244: 388 (1979) (in Russian).Google Scholar
  46. 47.
    L.L. Bouilov. A.E. Alexenko. A.A. Botev, and B.V. Spitsyn. Certain characteristics of the growth of diamond layers from an active gas phase. Soviet Physical Chemistry, 1986, p. 302.Google Scholar
  47. 48.
    K. Nishimura, K. Cobashi. Y. Kawate, and T. Horiuchi. Growth of diamond using plasma CVD,Kvb airz. TchaldiAgy Rev. No. 2: 49 (1987).Google Scholar
  48. 46.
    Y. Mitsuda, T. Yoshida, and K. Akashi, Diamond synthesis in MW plasma. jet, in: 1st ICNDST. Program and Abstracts“, Tokyo (1988), p. 44.Google Scholar
  49. 49.
    A,I. Fomitshev, V.M. Sharapov, A.P. Zakharov, E.V. Spitsyn, A.A. Botev, and A.A. Bouilov. Sputtering of diamond films by-low-energy deuterium ions, in: “Proc 4th int. Conf. on Ramp;D in Constructing Materials for Thermonuclear Reactors,” Dubna, 29–31 Jan. (1990) (in Russian), pp.6–7.Google Scholar
  50. 50.
    B.V. Spitsyn and A.E. Alexenko, Physico-chemical peculiarity of diamond doping from vapor phase, Archaiwwia Nauli o Mayerialakh (Warsaw) 7: 201 (1986).Google Scholar
  51. 51.
    A.E. Alexenko and B. V. Spitsyn, Some properties of CVD-diamond semiconducting structures, This Eroceedings (1991).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Boris V. Spitsyn
    • 1
  1. 1.Institute of Physical ChemistryUSSR Academy of SciencesMoscowUSSR

Personalised recommendations