Modelling and Simulation of Particle-Surface Interactions

  • Roger Smith
Part of the NATO ASI Series book series (NSSB, volume 266)


This paper will describe different approaches to modelling the interaction of energetic particles with surfaces. In the first part of the paper the primary focus will be towards developing models that can explain how surface topography changes on the macroscopic scale both as a result of sputtering (erosion) and deposition or redeposition (growth). The development of the theory will be general and not specifically related to diamond. Two approaches will be described. The simplest model will be to consider the substrate as consisting of a regular cellular structure1–5. Deposition occurs as a result of adding cells to the surface and erosion by their removal. The rules for adding or removing cells from the surface will be specified in terms of the local environment of each cell. This approach leads to the possibility of parallel computer algorithms for large scale systems although all the calculations presented here have been carried out on serial machines.


Erosion Rate Molecular Dynamic Simulation Layer Atom Particle Bombardment Diamond Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Ramanlal and L. M. Sander, Phys. Rev. Lett. 54 (16), 1828, (1985).ADSCrossRefGoogle Scholar
  2. [2]
    G. E. Blonder, Phys. Rev. B. 33 (9), 6157, (1986).CrossRefGoogle Scholar
  3. [3]
    P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A. 34 (6), 5091, (1986).ADSCrossRefGoogle Scholar
  4. [4]
    R. Smith, A. H. Osbaldestin, G. Carter and M. J. Nobes, in Materials modification by high-fluence beams, R. Kelly and M. Fernanda Da Silva eds NATO ASI Series E no 155, Kluwer, Dordrecht, Netherlands 205, (1989).Google Scholar
  5. [5]
    F. Family and T. Vicsek, Computers in Physics, 4 (1), 44, (1990).Google Scholar
  6. [6]
    J. P. Ducommun, M. Cantagrel and M. Moulin, J. Mater. Sci. 16, 52, (1975).ADSCrossRefGoogle Scholar
  7. [7]
    R. Smith and J. M. Walls, Philos. Mag. A 42, 235, (1980).ADSCrossRefGoogle Scholar
  8. [8]
    C. H. Ting and A. R. Neureuther, Solid State Technol., 25, 115, (1982).CrossRefGoogle Scholar
  9. [9]
    G. Carter, In Erosion and growth of solids stimulated by atom and ion beams (Proceedings of NATO Advanced Study Institute, Heraklion, Crete, Greece, 1627 September 1985), p70, Holland: Martinus Nijhoff, (1986).Google Scholar
  10. [10]
    M. J. Nobes, Ibid,103.Google Scholar
  11. [11]
    R. Smith and M. A. Tagg, Ibid,121.Google Scholar
  12. [12]
    R. Smith, S. J. Wilde, G. Carter, I. V. Katardjiev and M. J. Nobes, J. Vac. Sci. Technol. B, 5 (2), 579, (1987).CrossRefGoogle Scholar
  13. [13]
    R. Smith, G. Carter and M. J. Nobes, Proc. Roy. Soc. London, Ser A, 407, 405, (1986).Google Scholar
  14. [14]
    D. E. Harrison Jr., Critical Reviews in Solid State and Materials Sciences 14, 51, (1988).Google Scholar
  15. [15]
    R. Smith and D.E. Harrison Jr., Phys. Rev. B., 40, 2090, (1989).ADSCrossRefGoogle Scholar
  16. [16]
    N. Winograd, B. J. Garrison and D. E. Harrison Jr., Phys. Rev. Lett. 41, 1120, (1978).CrossRefGoogle Scholar
  17. [17]
    N. Winograd, P. H. Kobrin, G. A. Shick, J. Singh, J. P. Baxter and B. J. Garrison, Surf. Sci. Lett., 176, L817, (1986).CrossRefGoogle Scholar
  18. [18]
    B. J. Garrison, C. T. Reimann, N. Winograd and D. E. Harrison Jr., Phys. Rev B 36, 3516, (1986).ADSCrossRefGoogle Scholar
  19. [19]
    C. T. Reimann, M. El-Maazawi, K. Walzl, B. J. Garrison, N. Winograd and D. M. Deaven, J. Chem. Phys. 90, 2027, (1989).ADSCrossRefGoogle Scholar
  20. [20]
    R. Smith, D. E. Harrison Jr. and B. J. Garrison, Phys. Rev. B. 40, 93, (1989).ADSCrossRefGoogle Scholar
  21. [21]
    R. Smith, D. E. Harrison Jr. and B. J. Garrison, Nucl. Instrum. Meth. B 46, 1, (1990).ADSCrossRefGoogle Scholar
  22. [22]
    B. J. Garrison and N. Winograd, Science 216, 805, (1982).ADSCrossRefGoogle Scholar
  23. [23]
    D. Srivastava, B. J. Garrison and D. W. Bremner, Phys. Rev. Lett. 63, 302, (1989).ADSCrossRefGoogle Scholar
  24. [24]
    T. Toffoli and N. Margolus, Cellular Automata Machines MIT Press p5, (1987).Google Scholar
  25. [25]
    H. J. Leamy, G. H. Gilmer and A. G. Dirks, in Current Topics in Materials Science,_ E. Katdis (ed), North Holland, Amsterdam 309, (1980).Google Scholar
  26. [26]
    J. M. Nieuwenheuzen and H. B. Haanstra, Philips Tech. Rev., 27, 87, (1976).Google Scholar
  27. [27]
    A. Benninghoven, Z Phys, 230, 403, (1971).ADSGoogle Scholar
  28. [28]
    S. M. Rossnagel and R. S. Robinson, J. Vac. Sci. Technol. A, 1, 426, (1983).ADSCrossRefGoogle Scholar
  29. [29]
    H. H. Andersen and H. L. Bay, in Sputtering by Particle Bombardment 1 144, R Behrisch (Ed), Springer-Verlag, Berlin, (1981).Google Scholar
  30. [30]
    J. A. Sethian, Commun. Math. Phys., 101, 487, (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  31. [31]
    J. A. Sethian, J. Diff. Geom.,in press, (1990).Google Scholar
  32. [32]
    M. J. Lighthill and G. B. Whitham, Proc Roy Soc London, Ser A, 229, 218, (1955).Google Scholar
  33. [33]
    I. V. Katardiev, J. Vac. Sci. Technol. A, 7 (6), 3222, (1989).ADSGoogle Scholar
  34. [34]
    I. V. Katardiev, private communication, (1989).Google Scholar
  35. [35]
    R. Smith, S. S. Makh and J. M. Walls, Phil. Mag., A47, 453, (1983).Google Scholar
  36. [36]
    J. B. Gibson, A. N. Goland, M. Milgrim and G. H. Vineyard, Phys. Rev. 120, 1229, (1960).ADSCrossRefGoogle Scholar
  37. [37]
    R. Smith and D.E. Harrison Jr., Computers in Physics, 3 (5), 68, (1989).ADSGoogle Scholar
  38. [38]
    J. Tersoff, Phys. Rev. Lett. 61, 2879, (1988).ADSCrossRefGoogle Scholar
  39. [39]
    D. W. Brenner, Mater. Res. Soc. Symp. Proc. 141, 59, (1989).Google Scholar
  40. [40]
    G. C. Abell, Phys. Rev. B., 35, 6184, (1985).ADSCrossRefGoogle Scholar
  41. [41]
    G. Molière, Z. Naturforsch., 2a, 133, (1947).ADSMATHGoogle Scholar
  42. [42]
    J. Tersoff, Phys. Rev. B. 39, 5566, (1989).ADSCrossRefGoogle Scholar
  43. [43]
    T. Ito, K. E. Kohr and S. Das Sarma, Phys. Rev. B. 41, 3893, (1990).ADSCrossRefGoogle Scholar
  44. [44]
    M. W. Thompson, Phil. Mag. 18, 377, (1968).ADSCrossRefGoogle Scholar
  45. [45]
    P. Sigmund, Phys. Rev. 184, 383, (1969).ADSCrossRefGoogle Scholar
  46. [46]
    M. T. Robinson, in Sputtering by Particle Bombardment, ed by R. Behrisch, Chapter 3, pp. 73–144, Springer-Verlag, Berlin, (1981).Google Scholar
  47. [47]
    J. P. Biersak and W. Eckstein, Appl. Phys. A34, 73, (1984).Google Scholar
  48. [48]
    M. T. Robinson and I. M. Torrens, Phys. Rev. B. 9, 5008, (1974).ADSCrossRefGoogle Scholar
  49. [49]
    R. P. Webb, and D. E. Harrison Jr., Phys. Rev. Lett. 50, 1478, (1983).ADSCrossRefGoogle Scholar
  50. [50]
    R. Smith, Proc. Roy. Soc. A in press, (1990).Google Scholar
  51. [51]
    R. Smith and R. P. Webb, Nucl. Instrum. Meth. B in press, (1990).Google Scholar
  52. [52]
    R. J. Hamers, U. K. Köhler and J. E. Demuth, J. Vac. Sci Technol. A, 8 (1), 195, (1990).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roger Smith
    • 1
  1. 1.Department of Mathematical SciencesLoughborough UniversityLeicestershireUK

Personalised recommendations