Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process

  • K. L. Moazed
  • J. R. Zeidler
  • M. J. Taylor
  • C. A. Hewett
Part of the NATO ASI Series book series (NSSB, volume 266)


The recognized need for devices that can perform under severe operating conditions and recent advances in the growth of diamond films at moderate temperatures and low pressures has generated great interest in the exploitation of the many unique properties of diamond for solid state devices. Among these properties are high strength, high thermal conductivity, high band gap energy, high carrier mobility, and high resistance to degradation by exposure to radiation, heat, and corrosives[1,2].


Ohmic Contact Auger Electron Spectroscopy Diamond Film Gold Wire Diamond Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Moazed, J.R. Zeidler, and M.J. Taylor, J. Appl. Phys. 68, 2246 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    R. F. Davis, Z. Sitar, B. E. Williams, H. S. Kong, H. J. Kim, J. W. Palmour, J. A. Edmond, J. Ryu, J. T. Glass and C. H. Carter, Jr., Mat. Sci. Eng., B1, 77 (1988)CrossRefGoogle Scholar
  3. 3.
    H. Shiomi, H. Nakahata, T. Imai, Y. Nishbayashi and N. Fujimori, Jap. J. Appl. Phys., 28, 758 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    P. T. Wedepohl, Proc. Phys. Soc., B70, 177 (1957)CrossRefGoogle Scholar
  5. 5.
    I. G. Austin and R. Wolfe, Proc. Phys. Soc., B69, 329 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    V. S. Vavilov, E. A. Konorova, E. G. Stepanova, and E. M. Trukhan, Sov. Phys. Semicond. 13(b), 635 (1979)Google Scholar
  7. 7.
    J. Prins, J. Phys. D, 22, 1562 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    G. S. Sandhu, M. L. Swanson, and W. K. Chu, Appl. Phys. Lett 55, 2 October, 1397 (1989)Google Scholar
  9. 9.
    M. Seal, Industrial Diamond Review, 29, 408 (1969)Google Scholar
  10. 10.
    G. B. Rogers and F. A. Raal, Rev. Sci. Inst., 31, 663 (1960)ADSCrossRefGoogle Scholar
  11. 11.
    A. T. Collins, E. C. Lightowlers and A.W.S. Williams, Diamond Research, 19, 19 (1970)Google Scholar
  12. 12.
    E. A. Burgemeister, Phys. Med. Biol26, 269 (1981)CrossRefGoogle Scholar
  13. 13.
    A. T. Collins, E. C. Lightowlers and P. J. Dean, Phys. Rev. 183, 725 (1969)ADSCrossRefGoogle Scholar
  14. 14.
    K. L. Moazed, R. Nguyen and J. R. Zeidler, IEEE Elect. Dev. Lett., 9, 350 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    G. Gildenblat, S. Grot, C. Wronski, A. Badzian, T. Badzian and R. Messier, Appl. Phys. Lett., 53, 586 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    M. W. Geis, D. D. Rathsam, D. J. Erlich, R. A. Murphy, and W. T. Lindley, IEEE Electron Device Letters, EDL-8, 341 (1987)Google Scholar
  17. 17.
    F. Fang, C. A. Hewett, M. G. Fernandes and S. S. Lau, IEEE Trans, Elect. Dev., 36, 1783 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    G. L. Gutseve, Y. M. Shulga, and Y. G. Borodko, Phys, Status Solidi B 121, 595 (1984)ADSCrossRefGoogle Scholar
  19. 19.
    Y. M. Shulga, G. L. Gustev and V. I. Rubstov, Phys. Status Solidi B 129, 683 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. L. Moazed
    • 1
  • J. R. Zeidler
    • 1
  • M. J. Taylor
    • 1
  • C. A. Hewett
    • 1
  1. 1.North Carolina State UniversityRaleighUSA

Personalised recommendations