Advertisement

Al Metal Point Contact to B-Doped Diamond Films

  • Koichi Miyata
  • Yuichi Matsui
  • Kazuo Kumagai
  • Shigeaki Miyauchi
  • Koji Kobashi
  • Akimitsu Nakaue
Part of the NATO ASI Series book series (NSSB, volume 266)

Abstract

The mechanical, thermal, optical, and electrical properties of diamond have been shown to be superior to those of other materials[1,2,3,4]. These properties can be utilized in a wide range of optoelectronic device applications as well as for extreme environmental conditions[5,6]. Chemical vapor deposition(CVD) of diamond offers an attractive solution for obtaining semiconducting diamond thin films. In order to exploit the electronic properties of these polycrystalline films, it is critical to evaluate the properties of electrical contacts to the diamond surface. In particular, reliable ohmic and rectifying contact technologies have been difficult to develop and reproduce. Recently, the formation of Schottky contacts to polycrystalline diamond films have been reported[7,8], but the relationship between the rectifying characteristics and the quantity of B impurities incorporated into the films was not examined.

Keywords

Point Contact Barrier Height Diamond Film Forward Bias Schottky Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Field, The Properties of Diamond,Academic Press(1979).Google Scholar
  2. 2.
    M. Seal, Interdisciplinary Science Reviews, Vol. 14, No. 1, 64 (1989)CrossRefGoogle Scholar
  3. 3.
    V. K. Bazhenov, I. M. Vikulin, and A. G. Gontar, Sov. Phys. Semicond. 19(8), 829, August(1985).Google Scholar
  4. 4.
    V. S. Vavilov, and E. A. Konorova, Soy. Phys. Usp., Vol. 19, No. 4, 301, April(1976).Google Scholar
  5. 5.
    M. W. Geiss, D. D. Rachman, D. J. Ehrlich, R. A. Murphy, and W. T. Lindley, IEEE Electron Device Lett., EDL8, 341 (1987).Google Scholar
  6. 6.
    R. Wolfe, and J. Woods, Phys. Rev. Vol. 105, No. 3, 921, February(1956).Google Scholar
  7. 7.
    G. Sh. Gildenblat, S. Grot, C. R. Wronski, A. R. Badzian, T. Badzian, and R. Messier, Appl. Phys. Lett. 53, 586 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Mori, H. Kawarada, Y. Yokota, and A. Hiraki, Materials Research Society, Fall Meeting, Boston, December (1989) paper F5. 7.Google Scholar
  9. 9.
    K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, Phys. Rev. B, 38, 6, 4067.Google Scholar
  10. 10.
    E. H. Rhoderick, and R. H. Williams, Metal-semiconductor contacts. Second edition, Oxford University Press (1988).Google Scholar
  11. 11.
    S. M. Sze, Physics of Semiconductor Devices 2nd edition, John Wiley & Sons, Inc (1981).Google Scholar
  12. 12.
    M. A. Lampert, and P. Mark, Current Injection In Solids,Academic Press (1970).Google Scholar
  13. 13.
    R. A. Clarke, M. A. Green, and J. Shewchun, J. Appl. Phys., Vol. 45, No. 3, March (1974) pp. 1442–1443.Google Scholar
  14. 14.
    A. V. Bogdanov, I. M. Vikulin, and T. V. Bogdanova, Soy. Phys. Semicond. 16(6), June (1982) pp. 720–721.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Koichi Miyata
    • 1
  • Yuichi Matsui
    • 1
  • Kazuo Kumagai
    • 1
  • Shigeaki Miyauchi
    • 1
  • Koji Kobashi
    • 1
  • Akimitsu Nakaue
    • 1
  1. 1.Electronics Research LaboratoryKobe Steel, Ltd.Nishi-ku, KobeJapan

Personalised recommendations