Semiconductor Device Development with Homoepitaxial Diamond Films

  • S. A. Grot
  • G. Sh. Gildenblat
  • C. W. Hatfield
  • A. R. Badzian
  • T. Badzian
Part of the NATO ASI Series book series (NSSB, volume 266)


Diamond has many physical properties that make it an attractive semiconductor material for high-temperature and high power electronic devices1. Natural diamonds and synthetic bulk diamond fabricated by the traditional ultra high-pressure high-temperature method have been used to produce rudimentary active devices2,3. Schottky diodes and point contact transistors have operated at high temperatures3,4. However, the high cost of fabrication combined with the difficulty in controlling dopants for either natural or synthetic (high-pressure, high-temperature) diamond severely limit the applicability of these devices. Recently, several groups succeeded in fabricating the first semiconductor devices (Schottky diodes) based on p-type thin-film diamond deposited using an activated CVD process5–8. However, until now, the quality of the diamond films did not allow investigation of high-temperature device characteristics.


Ohmic Contact Schottky Diode Natural Diamond Diamond Surface Boron Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.N. Yoder, Nay. Res. Rev. 39, 27 (1987).Google Scholar
  2. 2.
    J.F. Prins, Appl. Phys. Lett. 41, 950 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    M.W. Geis, D.D. Rathman, D.J. Ehrlich, R.A. Murphy, and W.T. Lindley, IEEE Electron Device Lett. EDL-8, 341 (1987).Google Scholar
  4. 4.
    M. Bell, and W. Leivo, Phys Rev. 111, 1227 (1958).ADSCrossRefGoogle Scholar
  5. 5.
    G.Sh. Gildenblat, S.A. Grot, C.R. Wronski, A.R. Badzian, T. Badzian, and R. Messier, Appl. Phys. Lett. 53, 586 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    M.C. Hicks, C.R. Wronski, S.A. Grot, G.Sh. Gildenblat, A.R. Badzian, T. Badzian, and R. Messier, J. Appl. Phys. 65, 2139 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    M.W. Geis, D.D. Rathman, J.J. Zayhowski, D. Smyth, D.K. Smith, and G.A. Ditmer, 3rd ONR Diamond Technology Initiative Symp. Abs., Crystal City, VA, 115 (1988).Google Scholar
  8. 8.
    H. Shiomi, H. Nakahata, T. Imai, Y. Nishibayashi, and N. Fujimori, Japan. J. Appl. Phys. 28, 758 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    G.H. Glover, Solid-St. Electron. 16, 973 (1973).ADSCrossRefGoogle Scholar
  10. 10.
    M. Seal, Industrial Diamond Review 29, 408 (1969).Google Scholar
  11. 11.
    A.T. Collins, E.C. Lightowlers, and A.W.S. Williams, Diamond Research, 19 (1970).Google Scholar
  12. 12.
    K.L. Moazed, R. Nguyen, and J.R. Zeidler, IEEE Electron Device Lett. 9, 350 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    G.Sh. Gildenblat, S.A. Grot, C.W. Hatfield, C.R. Wronski, A.R. Badzian, T. Badzian, and R. Messier, Mat. Res. Bull. 25, 129 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. A. Grot
    • 1
  • G. Sh. Gildenblat
    • 1
  • C. W. Hatfield
    • 1
  • A. R. Badzian
    • 1
  • T. Badzian
    • 1
  1. 1.Department of Materials EngineeringCenter for Electronic Materials and ProcessingUSA

Personalised recommendations