Reactive Gas Glow Discharges

  • J. W. Coburn
Part of the NATO ASI Series book series (NSSB, volume 266)


In the last twenty years or so there has been an enormous growth in the use of reactive gas glow discharges for the processing of surfaces. Surface processing in this context can be divided into three major categories: deposition, etching and surface modification. Deposition and etching are terms which are well understood by most technically trained people but surface modification is a less familiar expression. The term surface modification is used to describe those processes which alter the physical and/or chemical characteristics of a pre-existing solid surface and in which this alteration is limited to a region relatively near the surface of the solid. Examples of surface modification processes are plasma oxidation, plasma nitriding and surface texturing. Some areas of technology in which reactive gas glow discharges play a major role are microelectronics, magnetic and optical recording technologies, photovoltaics, architectural glass, and machine tool fabrication.


Glow Discharge Etch Rate Plasma Processing Diamond Film Plasma Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kokubo, F. Tochikubo and T. Makabe, Diagnostics of low-frequency CH4 discharge by optical emission spectroscopy, J. Phvs.D 22: 1281 (1989).ADSGoogle Scholar
  2. 2.
    J.A. Mucha, D.L. Flamm and D.E. Ibbotson, On the role of oxygen and hydrogen in diamond-forming discharges, J. Appl. Phys. 65: 3448 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    J.W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, J. Appl. Phys. 51: 3134 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    R. d’Agostino, F. Cramarossa, S. De Benedictus and G. Ferraro, Spectroscopic diagnostics of CF4–02 plasmas during Si and SiO2 etching processes, J. Appl. Pis. 52: 1259 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    V.M. Donnelly, D.L. Flamm, W.C. Dautremont-Smith and D.J. Werder, Anisotropic etching of Si02 in low frequency CF4/O2 and NF3/Ar plasmas, J. Appl. Phys. 55: 242 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Roth, K.G. Spears and G. Wong, Spatial concentrations of silicon atoms by laser-induced fluorescence in a silane glow discharge, Appl. Phys. Lett. 45: 28 (1984).Google Scholar
  7. 7.
    R.A. Gottscho, R.H. Burton, D.L. Flamm, V.M. Donnelly and G.P. Davis, Ion dynamics of rf plasmas and plasma sheaths: A time-resolved spectroscopic study, J. Appl. Phys. 55: 2707 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    G.S. Selwyn, Spatially resolved detection of 0 atoms in etching plasmas by two-photon laser-induced fluorescence, J. Appl. Phys. 60: 2771 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    R.E. Walkup, K.L. Saenger and G.S. Selwyn, Studies of atomic oxygen in 02 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy, J. Chem. Phys. 84: 2668 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    G.S. Selwyn, L.D. Baston and H.H. Sawin, Detection of Cl and chlorine-containing negative ions in rf plasmas by two-photon laser-induced fluorescence, Appl. Phys. Lett. 51: 898 (1987).Google Scholar
  11. 11.
    R.A. Gottscho and T.A. Miller, Optical techniques in plasma diagnostics, Pure and Appl. Chem. 56: 189 (1984).CrossRefGoogle Scholar
  12. 12.
    W.R. Harshbarger, Plasma diagnostics and end-point detection, in: “VLSI Electronics- Microstructure Science, Vol. 8- Plasma Processing for VLSI,” N.G. Einspruch and D.M. Brown, eds., Academic Press, Orlando (1984), pp. 411–446.Google Scholar
  13. 13.
    R.W. Dreyfus, J.M. Jasinski, R.E. Walkup and G.S. Selwyn, Optical diagnostics of low pressure plasmas, Pure and Appl. Chem. 57: 1265 (1985).Google Scholar
  14. 14.
    V.M. Donnelly, Optical diagnostic techniques for low pressure plasmas and plasma processing, in: “Plasma Diagnostics, Vol. 1- Discharge Parameters and Chemistry,” 0. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 1–46.Google Scholar
  15. 15.
    L.A. Farrow, Infrared laser spectroscopy of BC13 in an rf discharge, J. Chem. Phys. 82: 3625 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    J.A. O’Neill, J. Singh and G.G. Gifford, In situ infrared diagnostics of particle forming etch plasmas, J. Vac. Sci. Technol.A 8:1716 (1990).ADSCrossRefGoogle Scholar
  17. 17.
    K.G. Spears, T.J. Robinson and R.M. Roth, Particle distributions and laser-particle interactions in an rf discharge of silane, IEEE Trans. Plasma Sci. PS-14: 179 (1986).Google Scholar
  18. 18.
    G.S. Selwyn, J.S. McKillop, K.L. Haller and J.J. Wu, In situ plasma contamination measurements by HeNe laser light scattering: A case study, J. Vac. Sci. Technol.A 8:1726 (1990).ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Gottscho and C.E. Gaebe, Negative ion kinetics in rf glow discharges, IEEE Trans. Plasma Sci. PS-14: 92 (1986).Google Scholar
  20. 20.
    P.J. Hargis, Trace detection of N2 by KrF-laser-excited spontaneous Raman spectroscopy, Appl. Optics 20: 149 (1981).ADSGoogle Scholar
  21. 21.
    P.J. Marcoux and P.D. Foo, Methods for endpoint detection for plasma etching, Solid State Technol. 24–4: 115 (1981).Google Scholar
  22. 22.
    P.A. Heimann, Optical etch-rate monitoring using active device areas: Lateral interference effects, J. Electrochem. Soc. 132: 2003 (1985).Google Scholar
  23. 23.
    G.S. Selwyn, B.D. Ai and J. Singh, Real-time measurements of plasma/surface interaction by plasma-amplified photoelectron detection, Appl. Phys. Lett. 52: 1953 (1988).Google Scholar
  24. 24.
    S.W. Downey, A. Mitchell and R.A. Gottscho, Photoemission optogalvanic spectroscopy: An in-situ method for plasma electrode surface characterization, J. Appl. Phys. 63: 5280 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    A. Mitchell and R.A. Gottscho, Plasma power dissipation at wafer surfaces measured using pulsed photoluminescence spectroscopy, J. Vac. Sci. Technol.A 8: 1712 (1990).ADSCrossRefGoogle Scholar
  26. 26.
    D.E. Aspnes and R.P.H. Chang, Spectroscopic ellipsometry in plasma processing, in: “Plasma Diagnostics, Vol. 2-Surface Analysis and Interactions,” 0. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 67–108.Google Scholar
  27. 27.
    T.F. Heinz, M.M.T. Loy and W.A. Thompson, Study of symmetry and disordering of Si(111)-7x7 surfaces by optical second harmonic generation, J. Vac. Sci. Technol.B 3: 1467 (1985).CrossRefGoogle Scholar
  28. 28.
    H.E. Evans and P.P. Jennings, Mass spectrometric study of the ionic species in a radiofrequency discharge in methane, J. Phys. Chem. 70: 1265 (1966).CrossRefGoogle Scholar
  29. 29.
    G. Smolinsky and M.J. Vasile, Ionic and neutral products of an rf discharge in methane, Intern. J. Mass Spectrom. Ion Phys. 16: 137 (1975).CrossRefGoogle Scholar
  30. 30.
    M.J. Vasile and G. Smolinsky, Mass spectrometric sampling of the ionic and neutral species present in different regions of an rf discharge in methane, Intern. J. Mass Spectrom. Ion Phys. 18: 179 (1975).CrossRefGoogle Scholar
  31. 31.
    R.B. Lockwood, R.E. Miers, L.W. Anderson, J.E. Lawler and C.C. Lin, Effect of water vapor on a CH4–H2 discharge plasma, Appl. Phys. Lett. 55: 1385 (1989).Google Scholar
  32. 32.
    J.W. Coburn, E. Taglauer and E. Kay, Glow-discharge mass spectrometry- Technique for determining elemental composition profiles in solids, J. Appl. Phys. 45: 1779 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    VG9000- Glow Discharge Mass Spectrometer, VG Isotopes Ltd.Google Scholar
  34. 34.
    J.W. Coburn, Mass spectrometric studies of positive ions in rf glow discharges, Thin Solid Films 171: 65 (1989).ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Vasile and H.F. Dylla, Mass spectrometry of plasmas, in: “Plasma Diagnostics, Vol. 1- Discharge Parameters and Chemistry,” O. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 185–238.Google Scholar
  36. 36.
    B. Chapman, “Glow Discharge Processes,” John Wiley & Sons, New York (1980), p. 59.Google Scholar
  37. 37.
    J.W. Coburn and E. Kay, Pressure considerations associated with ion sampling from glow discharges, J. Vac. Sci. Technol. 8: 738 (1971).ADSCrossRefGoogle Scholar
  38. 38.
    H. Lergon, M. Venugopalan and K.G. Muller, Mass spectrometer-wall probe diagnostic of Ar discharges containing SF6 and/or O2: Reactive ions in etching plasmas, Plasma Chem. Plasma Process. 4: 107 (1984).CrossRefGoogle Scholar
  39. 39.
    J.W. Coburn and E. Kay, Positive-ion bombardment of substrates in rf diode glow discharge sputtering, J. Appl. Phys. 43: 4965 (1972).ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Overzet, J.H. Beberman and J.T. Verdeyen, Enhancement of the negative ion flux to surfaces from radio-frequency processing discharges, J.Appl. Phys. 66: 1622 (1989).Google Scholar
  41. 41.
    H. Kojima, H. Toyoda and H. Sugai, Observation of CH rad-ical and comparison with CH3 radical in a rf methane CH2 charge, Appl. Phys. Lett. 55: 1292 (1989).Google Scholar
  42. 42.
    T.A. Milne, J.E. Beachey and F.T. Greene, Study of relaxation in free jets using temperature dependence of n-butane mass spectra, J. Chem. Phys. 56: 3007 (1972).ADSCrossRefGoogle Scholar
  43. 43.
    H.F. Winters, The role of chemisorption in plasma etching, J. Appl.Phys. 49: 5165 (1978).ADSCrossRefGoogle Scholar
  44. 44.
    J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson and S.E. Buttrill, Stoichiometric dry etching of mercury cadmium telluride using a secondary afterglow reactor, J. Vac. Sci. Technol.A 7: 676 (1989).ADSCrossRefGoogle Scholar
  45. 45.
    T.R. Hayes, M.A. Dreisbach, P.M. Thomas, W.C. DautremontSmith and L.A. Heimbrook, Reactive ion etching of InP using CH4/H2 mixtures: Mechanisms of etching and anisotropy, J. Vac. Sci. Technol.B 7: 1130 (1989).CrossRefGoogle Scholar
  46. 46.
    S.J. Pearton, W.S. Hobson and K.S. Jones, Etch rates and surface chemistry of GaAs and AlGaAs reactive ion etched in C2H6/H2, J. Appl. Phys. 66: 5009 (1989).ADSCrossRefGoogle Scholar
  47. 47.
    D.L. Smith and R.H. Bruce, Si and Al etching and product detection in a plasma beam under ultrahigh vacuum, J. Electrochem. Soc. 129: 2. 045 (1982).Google Scholar
  48. 48.
    H.F. Winters, J.W. Coburn and T.J. Chuang, Surface processes in plasma-assisted etching environments, J. Vac. Sci. Technol.B 1: 469 (1983).CrossRefGoogle Scholar
  49. 49.
    J.W. Coburn and H.F. Winters, Ion-and electron-assisted gas-surface chemistry- An important effect in plasma etching, J. Appl. Phys. 50: 3189 (1979).ADSCrossRefGoogle Scholar
  50. 50.
    Y-Y. Tu, T.J. Chuang and H.F. Winters, Chemical sputtering of fluorinated silicon, Phys. Rev.B 23: 823 (1981).CrossRefGoogle Scholar
  51. 51.
    H.F. Winters and J.W. Coburn, Plasma-assisted etching mechanisms: The implications of reaction probability and halogen coverage, J. Vac. Sci. Technol.B 3: 1376 (1985).CrossRefGoogle Scholar
  52. 52.
    F.A. Houle, A reinvestigation of the etch products of Si and XeF2; Doping and pressure effects, J. Appl. Phys. 60: 3018 (1986).ADSCrossRefGoogle Scholar
  53. 53.
    R.A. Barker, T.M. Mayer and W.C. Pearson, Surface studies of and a mass balance model for Ar+ ion-assisted C12 etching of Si, J. Vac. Sci. Technol.B 1: 37 (1983).CrossRefGoogle Scholar
  54. 54.
    A.W. Kolfschoten, R.A. Haring, A. Haring and A.E. de Vries, Argon-ion assisted etching of silicon by molecular chlorine, J. Appl. Phys. 55: 3813 (1984).ADSCrossRefGoogle Scholar
  55. 55.
    R.A. Rossen and H.H. Sawin, Time-of-flight and surface residence time measurements for ion-enhanced Si-C12 reaction products, J. Vac. Sci. Technol.A 5: 1595 (1987).ADSCrossRefGoogle Scholar
  56. 56.
    U. Gerlach-Meyer, J.W. Coburn and E. Kay, Ion-enhanced gas-surface chemistry: The influence of the mass of the incident ion, Surf. Sci. 103: 177 (1981).Google Scholar
  57. 57.
    F.R. McFeely, J.F. Morar and F.J. Himpsel, Soft x-ray photoemission study of the silicon-fluorine etching reaction, Surf. Sci. 165: 277 (1986).Google Scholar
  58. 58.
    J.A. Yarmoff and F.R. McFeely, Mechanism of ion-assisted etching of silicon by fluorine atoms, Surf. Sci. 184: 389 (1987).Google Scholar
  59. 59.
    T. Mizutani, C.J. Dale, W.K. Chu and T.M. Mayer, Surface modification in plasma-assisted etching of silicon, Nucl. Instrum. Meth.B 7: 825 (1985).ADSCrossRefGoogle Scholar
  60. 60.
    J. Abrefah and D.R. Olander, Reaction of atomic hydrogen with crystalline silicon, Surf. Sci. 209: 291 (1989).Google Scholar
  61. 61.
    J.C. Angus, H.A. Will and W.S. Stanko, Growth of diamond seed crystals by vapor deposition, J. Apps. Phys. 39: 2915 (1968)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Hirose and Y. Terasawa, Synthesis of diamond thin films by thermal CVD using organic compounds, Jpn. J. Appl. Phys. 25: L519 (1986).ADSCrossRefGoogle Scholar
  63. 63.
    D.L. Smith and P.G. Saviano, Plasma beam studies of Si and Al etching mechanisms, J. Vac. Sci. Technol. 21: 768 (1982).ADSCrossRefGoogle Scholar
  64. 64.
    R.H. Bruce and G.P. Malafsky, High rate anisotropic aluminum etching, J. Electrochem. Soc. 130: 1369 (1983).CrossRefGoogle Scholar
  65. 65.
    R.A.H. Heinecke, Control of relative etch rates of Si02 and Si in plasma etching, Solid State Electron. 18: 1146 (1975).ADSCrossRefGoogle Scholar
  66. 66.
    J.W. Coburn and H.F. Winters, Plasma etching- A discussion of mechanisms, J. Vac. Sci. Technol. 1. 6: 391 (1979).Google Scholar
  67. 67.
    J.W. Coburn, Pattern transfer, Superlattices and Microstructures 2: 17 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    H.W. Lehmann, L. Krausbauer and R. Widmer, Redeposition- A serious problem in rf sputter etching of structures with micrometer dimensions, J. Vac. Sci. Technol. 14: 281 (1977).ADSCrossRefGoogle Scholar
  69. 69.
    Auciello, Recent progress in understanding ion bombardment-induced synergism in the erosion of carbon due to multispecies impact, Nucl. Instrum. Meth.B 13: 561 (1986).ADSCrossRefGoogle Scholar
  70. 70.
    R. Yamada, Chemical sputtering of sintered diamond compacts and diamond film, J. Vac. Sci. Technol.A 5: 2. 222 (1987).Google Scholar
  71. 71.
    N.N. Efremow, M.W. Geis, D.C. Flanders, G.A. Lincoln and E.P. Economou, Ion-beam-assisted etching of. diamond, J. Vac. Sci. Technol.B 3:416 (1985).CrossRefGoogle Scholar
  72. 72.
    G.S. Sandu and W.K. Chu, Reactive ion etching of diamond, Appl. Phys. Lett 55: 437 (1989).Google Scholar
  73. 73.
    F.D. Egitto, F. Emmi, R.S. Horwath and V. Vukanovic, Plasma etching of organic materials. I. Polyimide in 02-CF4, J. Vac. Sci. Technol.B 3: 893 (1985).CrossRefGoogle Scholar
  74. 74.
    D.L. Flamm and V.M. Donnelly, The design of plasma etchants, Plasma Chem. Plasma Process. 1: 317 (1981).CrossRefGoogle Scholar
  75. 75.
    H. Kasai, M. Kogoma, T. Moriwaki and S. Okazaki, Surface structure estimation by plasma fluorination of amorphous carbon, diamond, graphite and plastic film surfaces, J. Phys.D 19: L225 (1986).ADSCrossRefGoogle Scholar
  76. 76.
    P. Friedel and S. Courrier, Review of oxidation processes in plasmas, J. Phys. Chem. Solids 44: 353 (1983).ADSCrossRefGoogle Scholar
  77. 77.
    V.Q. Ho and T. Sugano, Plasma anodization of silicon and its application to the fabrication of devices and integrated circuits, Thin Solid Films 95: 315 (1982).ADSCrossRefGoogle Scholar
  78. 78.
    J.H. Greiner, Oxidation of lead films by rf sputter etching in an oxygen plasma, J. Appt. Phys. 45: 32 (1974).ADSCrossRefGoogle Scholar
  79. 79.
    P.C. Jindal, Ion nitriding of steels, J. Vac. Sci. Technol. 15: 313 (1978).ADSCrossRefGoogle Scholar
  80. 80.
    J.R. Conrad, J.L. Radke, R.A. Dodd, F.J. Worzala. and N.C. Tran, Plasma-source ion implantation technique for surface modification of materials, J. Appl. Phys. 62: 4591 (1987).ADSCrossRefGoogle Scholar
  81. 81.
    I.H. Wilson, The topography of ion bombarded surfaces, Surface Topography 2: 289 (1989).Google Scholar
  82. 82.
    J.L. Vossen, Inhibition of chemical sputtering of organics and C by trace amounts of Cu surface contamination, J. Appl. Phys. 47: 544 (1976).ADSCrossRefGoogle Scholar
  83. 83.
    T. Makino, H. Nakamura and T. Nakashita, Increase in photoconductivity of polysilicon by plasma annealing, J. Appl. Phys. 51: 5868 (1980).ADSCrossRefGoogle Scholar
  84. 84.
    S. Iwamatsu, Effects of plasma cleaning on the dielectric breakdown in Si02 film on Si, J. Electrochem. Soc. 129: 224 (1982).CrossRefGoogle Scholar
  85. 85.
    C.J. Robinson, The effects of a glow discharge on the nucleation characteristics of Au on polymer substrates, Thin Solid Films 57: 285 (1979).ADSCrossRefGoogle Scholar
  86. 86.
    T.L. Ward, H.Z. Jung, O. Hinojosa and R.R. Benerito, Effect of cold plasmas on polysaccharides, Surf. Sci. 76: 257 (1978).Google Scholar
  87. 87.
    D.F. Klemperer and D.J. Williams, Changes in the chemical reactivity of metals exposed to an inert gas glow discharge, Vacuum 33: 301 (1983).CrossRefGoogle Scholar
  88. 88.
    G.J. Sprokel and R.M. Gibson, Liquid crystal alignment produced by rf plasma deposited films, J. Electrochem. Soc. 124: 557 (1977).CrossRefGoogle Scholar
  89. 89.
    J.M. Moran and G.M. Taylor, Plasma pretreatment to improve resist flow properties by reduction of resist flow during postbake, J. Vac. Sci. Technol. 19: 1127 (1981)ADSCrossRefGoogle Scholar
  90. 90.
    J-S. Maa, D. Meyerhofer, J.J. O’Neill, L. White and P.J. Zanzucchi, Reflectivity reduction by oxygen plasma treatment of capped metallization layer, J Vac. Sci Technol.B 7: 145 (1989).CrossRefGoogle Scholar
  91. 91.
    T.J. Donahue and R. Reif, Silicon epitaxy at 650–800 C using low pressure chemical vapor deposition with and without plasma enhancement, J. Appl. Phys. 57: 2757 (1985).ADSCrossRefGoogle Scholar
  92. 92.
    J.J. Hsieh, D.E. Ibbotson, J.A. Mucha and D.L. Flamm, Directional deposition of silicon oxide by a plasma enhanced TEOS process, MRS Symposium Proceedings 165: XXX (1989).CrossRefGoogle Scholar
  93. 93.
    D.W. Hess, Plasma-surface interactions in plasma-enhanced chemical vapor deposition, Ann. Rev. Mater. Sci. 16: 163 (1986).MathSciNetADSCrossRefGoogle Scholar
  94. 94.
    S. Veprek, Applications of low pressure plasmas in materials science: Especially chemical vapor deposition, in: “Current Topics in Materials Science,” Vol.4, E. Kaldis, ed., North-Holland, Amsterdam (1980), pp. 151–236.Google Scholar
  95. 95.
    H. Yasuda, “Plasma Polymerization,” Academic Press, New York (1985).Google Scholar
  96. 96.
    J.F. Evans and G.W. Prohaska, Preparation of thin polymer films of predictable chemical functionality using plasma chemistry, Thin Solid Films 118: 171 (1984).ADSCrossRefGoogle Scholar
  97. 97.
    E. Kay and A. Dilks, Metal-containing polymer films produced by simultaneous plasma etching and polymerization: The series of perfluoroalkanes Cn,F2n+2 (n=1,2,3,4), Thin Solid Films 78: 309 (1981).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. W. Coburn
    • 1
  1. 1.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations