Physics of Glow Discharge Plasmas and Plasma/Surface Interactions During Thin Film Growth

  • Jan-Eric Sundgren
Part of the NATO ASI Series book series (NSSB, volume 266)


Low pressure glow discharge plasmas are today frequently used in materials processing. For example, sputter deposition and other ion assisted growth techniques are essential for production of semiconductor devices, hard wear resistant coatings and for various optical thin films. Also plasma assisted etching techniques and plasma polymerization are extensively used in many industrial processes. A glow discharge plasma can be defined as a partially ionized low pressure gas in a quasi-neutral state sustained by the presence of energetic electrons. The character of such plasmas is basically a consequence of the mass difference between the electrons and the ions. Due to this mass difference, energy is transfered more rapidly to the electrons than to the ions. These energetic electrons then accumulate sufficient energy to have a high probability of causing ionization and excitation events when colliding with heavier particles. The generation of these particles and their interactions with surfaces and growing films are the most important reasons why glow discharge plasmas have become of such importance in materials science.


Glow Discharge Energetic Electron Collision Cross Section Reactive Magnetron Glow Discharge Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Thornton and J.E. Greene, “Plasmas used in deposition processes” in Deposition Technologies for Films and Coatings ed. R.F. Bunshah, Noyes Publ. New York, (1990) ch 2.Google Scholar
  2. 2.
    B. Chapman, Glow Discharge Processes, John Wiley & Sons, New York, (1980).Google Scholar
  3. 3.
    see for example, E. W. McDaniel, Collision Phenomena in Ionized Gases, Wiley, New York, (1964).Google Scholar
  4. 4.
    W.D. Westwood, “Calculations of deposition rates in diode sputtering systems”,J. Vac. Sci. Technol. 15, 1, (1978).ADSCrossRefGoogle Scholar
  5. 5.
    R. S. Robinson, “Energetic binary collisions in rare gas plasmas”, J. Vac. Sci. Technol. 16, 185, (1979).ADSCrossRefGoogle Scholar
  6. 6.
    R. E. Somekh, “The thermalization of energetic atoms during the sputtering process”, J. Vac. Sci. Technol. A 2, 1285, (1984).Google Scholar
  7. 7.
    R. E. Somekh, “Calculations of thermalization during the sputter deposition process”, Vacuum, 34, 987, (1984).CrossRefGoogle Scholar
  8. 8.
    D.W. Hoffman, “A sputtering wind”, J. Vac. Sci. Technol. A 3, 561, (1985).Google Scholar
  9. 9.
    S.M. Rossnagel, “Gas density reduction effects in magnetrons”,J. Vac. Sci. Technol. A 6, 19, (1988).Google Scholar
  10. 10.
    J.A. Thornton and A.S. Penfold, “Cylindrical magnetron sputtering” in Thin Filin Processes, eds. J.L. Vossen and W. Kern, Academic Press, New York (1978) p 75.Google Scholar
  11. 11.
    J.L. Vossen and J.J. Cuomo, “Glow discharge sputter deposition” in Thin Film Processes, eds. J.L. Vossen and W. Kern, Academic Press, New York (1978) p 11.Google Scholar
  12. 12.
    J.W. Coburn and E. Kay, “Positive ion bombardment of substrates in rf-diode glow-discharge sputtering”, J. Appl. Phys. 43, 4965, (1972).ADSCrossRefGoogle Scholar
  13. 13.
    W.D. Davis and T. A., Vanderslice, “Ion energies at the cathode of a glow discharge”, Phys Rev. 131, 219 (1963).ADSCrossRefGoogle Scholar
  14. 14.
    F.F. Chen, Introduction to plasma physics, Plenum Press, New York (1974).Google Scholar
  15. 15.
    B. Window and N. Savides, “Charged particle fluxes from planar magnetron sources”, J. Vac. Sci. Technol. A 4, 196, (1986).Google Scholar
  16. 16.
    S. Kadlec, J. Musil, W.D. Münz, G. Hdkansson and J.-E. Sundgren, Surf. Coat. Technol. “Reactive deposition of TiN films using an unbalanced magnetron”, 39/40, 487, 1989.Google Scholar
  17. 17.
    G. Hdkansson, J.-E. Sundgren, D. McIntyre, J.E. Greene and W.D. Munz, “Microstructure and physical properties of polycrystalline metastable Tio.5Alo.5N alloys grown by magnetron sputter deposition”, Thin Solid Films, 153, 55 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    K.-H. Müller, “Ion-beam-induced epitaxial vapor phase growth: A molwcular-dynamics study”, Phys. Rev. B 35, 7906, (1987).CrossRefGoogle Scholar
  19. 19.
    K.-H. Müller, “Role of incident kinetic energy of adatoms in thin film growth”. Surf. Sci. Lett, 184, L357, (1987).CrossRefGoogle Scholar
  20. 20.
    K.-H. Müller, “Model for ion assisted thin-film densification”, J. Appl. Phys. 59, 2803, (1986).ADSCrossRefGoogle Scholar
  21. 21.
    K.-H. Müller, “Modelling of ion-assisted deposition of CeO2 films”, Appl. Phys. A40, 209, (1986).Google Scholar
  22. 22.
    K.-H. Müller, “Dependence of thin-film microstructure on deposition rate by means of a computer simulation”, J. Appl. Phys. 58, 2573, (1986).CrossRefGoogle Scholar
  23. 23.
    see for example, J.E. Greene, S.A. Barnett, J.-E. Sundgren and A. Rockett, “Low-energy ion/ surface interactions during film growth from the vapor phase”,in Ion-Beam Assisted Film Growth,Ed. T.Itoh, Elseviere, New York, (1988) Ch 5.Google Scholar
  24. 25.
    L. Hultman, S.A. Barnett, J.-E. Sundgren and J.E. Greene, “Growth of TiN(100) films by reactive magnetron sputtering: Effects of low-energy ion bombardment”, J. Crystal Growth 92, 639 (1988).ADSCrossRefGoogle Scholar
  25. 26.
    L. Hultman, B.O. Johansson, J.-E. Sundgren, L.C. Markert and J.E. Greene, “Ar incorporation in epitaxial TiN films deposited by reactive magnetron sputtering”, Appl. Phys. Lett. 53, 1175 (1988).Google Scholar
  26. 27.
    L. Hultman, J.-E. Sundgren and J.E. Greene, “Formation of N2 polyhedral gas bubbles in reactively sputtered TiN”, J. Appl. Phys. 66, 536, (1989).ADSCrossRefGoogle Scholar
  27. 28.
    see for example, J.-E. Sundgren, J. Knall, W.-X. Ni, M.A. Hasan, L.C. Markert and J.E. Greene, Dopant kinetics and abrupt transitions during Si-MBE“, Thin Solid Films, 183, 281, (1989).ADSCrossRefGoogle Scholar
  28. 29.
    W.-X. Ni, J. Knall, M.A. Hasan, G.V. Hansson, J.-E. Sundgren, S.A. Barnett, L.C. Markert and J.E. Greene, “Low-energy ion beam doping of Sb during growth of Si MBE”, Phys. Rev. B 40, 10449, (1989).CrossRefGoogle Scholar
  29. 30.
    P. Fons, N. Hirashita, L.C. Markert, Y.-W. Kim, J.E. Greene, W.-X. Ni, J. Knall, G.V. Hansson and J.-E. Sundgren, “Electrical properties of Si(100) films doped with low-energy ions during growth by MBE”, Appl. Phys. Lett. 53, 1732, (1988).Google Scholar
  30. 31.
    H. Tsai and D. B. Bogy, “Characterization of diamond-like carbon films and their application as over-coats in thin film media for magnetic recording”, J. Vac. Sci. Technol. A 5, 3287, (1987).Google Scholar
  31. 32.
    J.E. Greene, “Crystal growth, atomic ordering and physical properties of epitaxial metastable semiconductors”, J. Vac. Sci. Technol. A 5, 1947, (1987).Google Scholar
  32. 33.
    L.T. Romano, J.-E. Sundgren, S.A. Barnett and J.E. Greene, ‘Domain structure in epitaxial metastable zincblend (GaAs)1-x(9e2)x (100) alloys grown by sputter deposition“,Phys Rev. B36, 7523, (1987).ADSGoogle Scholar
  33. 34.
    K.C. Cadien, A.H. Eltoukhy and J.E. Greene, Appl Phys. Lett 38, 773, (1981).ADSCrossRefGoogle Scholar
  34. 35.
    L.T. Romano, J.-E. Sundgren, S.A. Barnett and J.E. Greene, Superlattices and Microstructures, “Metastable GaSb1_,r(Sn2)X alloys; Crystal growth and phase stability of single crystal and polycrystal layers” 2, 233, (1986).Google Scholar
  35. 36.
    S.I. Shah, B.Kramer, S.A. B.rnett and J.E. Greene, “Direct evidence for an order/ disorder phase transition at x - 0.3 in single crystal metastable (GaSb)1_X(Ge2)X alloys”, J. Appl. Phys. 59, 1482, (1986).ADSCrossRefGoogle Scholar
  36. 37.
    D.J. Ball, “Plasma diagnostics and energy transport of a dc discharge used for sputtering”, J. Appl. Phys. 43, 3047, (1972).ADSCrossRefGoogle Scholar
  37. 38.
    S.S. Lau, R.H. Mills and D.G. Muth, “Temperature rise during film deposition by rf and dc sputtering”, J. Vac. Sci. Technol. 9, 1196, (1972).ADSCrossRefGoogle Scholar
  38. 39.
    M.R. Jordan and D.J. Stirland, “Changes in epitaxy produced by electron bombardment”, Thin Solid Films, 8, 221, (1971).ADSCrossRefGoogle Scholar
  39. 40.
    D.G. Lord and M. Prutton, “Electrons and epitaxial-growth of metals on alkali-hallides”, Thin Solid Films, 21, 341, (1974).ADSCrossRefGoogle Scholar
  40. 41.
    G. Shimaoka, “Modifications of epitaxy by electric charge effects”, Cryst. Growth, 31, 92, (1975).CrossRefGoogle Scholar
  41. 42.
    F.A. Avitaya, S. Delage, and F. Rosencher, “Si MBE; Recent developments”, Surf. Sci. 168, 483, (1986).ADSCrossRefGoogle Scholar
  42. 43.
    P. Bodö and J.-E. Sundgren, “Adhesion of evaporated Ti films to ion bombarded polyethylene”, J Appl. Phys 60, 1161, (1986).ADSCrossRefGoogle Scholar
  43. 44.
    P.S. Ho, P.S. Hahn, J.W. Bartha, G.W. Rubloff, F.K. LeGoues and B. Silverman, “Chemical bonding and reactions at metal/polymer interfaces”, J. Vac. Sci. Technol. A 3, 739, (1985).Google Scholar
  44. 45.
    J.M. Burkstrand, “Formation of metal-oxygen-polymer complexes of polystyrene with nickel and chromium”, J. Vac. Sci. Technol. 16, 1072, (1979).ADSCrossRefGoogle Scholar
  45. 46.
    P. Bodö and J.-E. Sundgren, “Titanium deposition onto plasma-treated polydimethylsiloxane: Surface modification and adhesion”, Thin Solid Films, 136, 147, (1986).ADSCrossRefGoogle Scholar
  46. 47.
    N.J. Chou and C.H. Tang, “Interfacial reaction during metallization of cured polyimide: An XPS study”, J.Vac. Sci. Technol. A 4, 751, (1984).Google Scholar
  47. 48.
    P. Bodö and J.-E. Sundgren, “Ion bombardment and Titanium film growth on polyimide”, J. Vac. Sci. Technol. A 6, 2396, (1988).Google Scholar
  48. 49.
    J.C. Bean, G.E. Becker, P.M. Petroff and T.E. Seidel, “Residual damage on temperature during sputter cleaning of Si”, J. Appl. Phys. 48, 907, (1977).ADSCrossRefGoogle Scholar
  49. 50.
    R. Roussille, R. Boch, G.L. Destefanis and J.L. Tissot, “32x32 planar IR photovoltaic mosaic arrays on sputtered Cd d Hg i _ X Te epilayers”, Appl. Phys. Lett. 44, 679, (1984).Google Scholar
  50. 51.
    M.L. Yu, “Thermal regrowth of Si(111) surface during ion bombardment”, Appl. Phys. Lett. 40, 986, (1982).Google Scholar
  51. 52.
    L.M. Gaverick, J.H. Comfort, T.R. Uyeh, R. Reif, F.A. Baiocchi, and H.S. Luftman, “Silicon surface cleaning by low dose argon-ion bombardment for low temperature (750 °C) epitaxiai deposition; H Epitaxial quality”, J. Appl. Phys. 62, 3398, (1987).ADSCrossRefGoogle Scholar
  52. 53.
    M.P. Seah and W. A. Dench, “Quantitative photoelectron spectroscopy of surfaces”, Surf. Interface Anal. 1, 2, (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jan-Eric Sundgren
    • 1
  1. 1.Thin Film Laboratory, Dept. of PhysicsLinköping UniversityLinköpingSweden

Personalised recommendations