Advertisement

Methods of Diamond Making

  • Thomas R. Anthony
Part of the NATO ASI Series book series (NSSB, volume 266)

Abstract

Diamond can be grown as an equilibrium phase at high pressures or grown metastably at subatmospheric pressures. Equilibrium growth at high pressures is carried out by both static and dynamic processes. The static process is an indirect process where metastable graphite is dissolved into a liquid metal solvent from which diamond precipitates out as the stable phase in a high pressure press. The dynamic high-pressure process directly converts graphite to diamond by going to very high pressures and temperatures for a short period of time by using explosives.

Keywords

Atomic Hydrogen Molecular Hydrogen Diamond Film Microwave Discharge Diamond Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henry A. Bent, “Second Law of Thermodynamics”, Oxford University Press, New York (1965)Google Scholar
  2. 2.
    Gordon Davies, “Diamond”, Adam Hilger Ltd, Bristol (1984)Google Scholar
  3. 3.
    F.P. Bundy, H.T. Hall, H.M. Strong, and R.J. Wentorf Jr, Nature, 176. 51–54 (1955)ADSCrossRefGoogle Scholar
  4. 4.
    R.C. Devries, Ann Rev Mater Sci, 17, 161–187 (1987)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    W.G. Eversole, U.S. Patent No. 3030188, Apr 17, 1962.Google Scholar
  6. 6.
    J.C. Angus, H.A. Will, and W.S. Stanko, J. Appl. Phys, 39, 2915 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Poferi, N.C. Gardner and J.C. Angus, J.Appl. Phys, 44, 1428 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    K.E. Spear, J. Am. Ceramic Soc, 72, 171 (1989)CrossRefGoogle Scholar
  9. 9.
    B.V.Spitsyn, L.L.Bouilov and B.V. Deryagin, J. Cryst. Growth, 52, 219 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    T.R. Anthony,“Synthesis of Metastable Diamond” in “Diamond, Boron, Nitride, Silicon Carbide and Related Wide Band Gap Semiconductors”, edited by J.F. Glass, R.F. Messier and N. Fujimori, Proc MRS 162, in press (1990)Google Scholar
  11. 11.
    W.E. Jones, S.D. Macknight and L. Teng, Chemical Revs, 73, 407 (1973)CrossRefGoogle Scholar
  12. 12.
    M. Knudsen, “Kinetic Theory of Gases”, Methuen & Co, London (1950)Google Scholar
  13. 13.
    H. Wise and C.A. Ablow, J Chem Phys 33, 10 (1960)Google Scholar
  14. 14.
    H. Wise and C.A. Ablow, J Chem Phys 29., 634 (1958)ADSCrossRefGoogle Scholar
  15. 15.
    J. Amdur, J. Chem Phys 4, 339 (1936)ADSCrossRefGoogle Scholar
  16. 16.
    H.A. Becker, “Dimensionless Parameters, Theory & Methodology”, John Wiley & Sons, New York (1976)Google Scholar
  17. 17.
    J. Zierep, “Similarity Laws and Modeling”, Marcel Dekker,Inc, New York (1971)Google Scholar
  18. 18.
    F.S. Larkin, Can J. Chem 45, 1005 (1968)CrossRefGoogle Scholar
  19. 19.
    H. R. Heath, T.L. Ibbs and N.E. Wild, Proc Roy Soc (London) A178, 380 (1941)ADSCrossRefGoogle Scholar
  20. 20.
    I. Langmuir, J. Amer. Chem. Soc, 54, 860 (1912)CrossRefGoogle Scholar
  21. 21.
    I. Langmuir, J. Amer. Chem. Soc, 24, 1310 (1912)CrossRefGoogle Scholar
  22. 22.
    I. Langmuir and G.M.J. Mackay, J. Amer. Chem. Soc, 25, 1708 (1914)CrossRefGoogle Scholar
  23. 23.
    I. Langmuir, J. Amer. Chem. Soc, 57, 417 (1915)CrossRefGoogle Scholar
  24. 24.
    M. Kamo, Y. Sato, S. Matsumoto and N. Setaka, J. Crystal Growth, 62, 642 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    S. Matsumoto, Y. Sato, M. Kamo and N. Setaka, Japn. J. Appl. Phys, 21, L183 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    H.J. Grabke, Berichte der Bunsengesellschaft, 55, 409 (1965)Google Scholar
  27. 27.
    H.J Grabke, Metallurgical Transactions 1, 2972 (1970)Google Scholar
  28. 28.
    F.G. Celii, P.E. Peterson, P.E. Wang and J.E. Butler, Appl Phys Letters 52, 2043 (1988)ADSCrossRefGoogle Scholar
  29. 29.
    F.G. Celii and J.E. Butler, Appl Phys Letters 54, 1031 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    T.R. Anthony, MRS Fall Meeting, Nov30-Dec3 (1987) BostonGoogle Scholar
  31. 31.
    B. Singh, Y. Arie, A.W. Levine and R.O. Mesker, Appl Phys Letters 52, 451 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    T.D. Moustakas, Solid State Ionics 32, 861 (1989)CrossRefGoogle Scholar
  33. 33.
    A. Sawabe and T. Inuzuka, Thin Solid Films 137, 89 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    T. A. Anthony, Unpublished work.Google Scholar
  35. 35.
    H.B. Vakil, Am Chem Soc Meeting, Mar (1989) DallasGoogle Scholar
  36. 36.
    R.E. Clausing, personal communication (1990)Google Scholar
  37. 37.
    H. Aikyo and K. Kondo, Jap Jour Appl Phys 28, L1631 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    J.E. Hughes, J. Less Common Metals, 1, 377 (1959)CrossRefGoogle Scholar
  39. 39.
    G.B. Gaines, C.T. Sims and R.I. Jaffe, J.Electrochem Soc 106, 881 (1959)CrossRefGoogle Scholar
  40. 40.
    Benno Lux and R. Haubner, Proceedings 12th Int Plansee Seminar, C16, 461, (1989)Google Scholar
  41. 41.
    Y. Hirose, J Jpn Soc Precis Eng 52, 1507 (1987)CrossRefGoogle Scholar
  42. 42.
    F. Jansen, I. Chen and M.A. Machonkin, J. Appl. Phys 66, 5749 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    A. Sawabe and T. Inuzuka, Thin Solid Films 137, 89 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    J.T. Glass, NATO Meeting on Boride, Carbides and Hard Materials, Manchester, UK (July, 1989 )Google Scholar
  45. 45.
    K. Kobashi, NATO Meeting on Boride, Carbides and Hard Materials, Manchester, UK (July, 1989 )Google Scholar
  46. 46.
    W.F. Banholzer, Diamonds 90 Conference, Crans-Montana, Switzerland (Sept, 1990 )Google Scholar
  47. 47.
    R.W. Wood, Proc Roy Soc, Ser A, 102, 1 (1923)ADSGoogle Scholar
  48. 48.
    J. Suzuki, H. Kawarada, K. Mar, J. Wei, Y. Yokota and A. Hiraki, Jap Journ Appl Phys, 28, L281 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    I. Watanabe and K Sugata, Jap Journ. Appl. Phys., 27, 1397 (1988)Google Scholar
  50. 50.
    O. Matsumoto, H. Toshima and Y. Kanzaki, Thin Solid Films, 128, 341 (1985)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Mitsuda, Y. Kojima, T. Y. shida and K. Akashi., Journ Mat Sci, 22, 1557 (1987)ADSCrossRefGoogle Scholar
  52. 52.
    H. Kawarada, K.S. Mar and A. Hiraki, Jap. Journ. App. Phys, 25, L1032 (1987)CrossRefGoogle Scholar
  53. 53.
    M. Kamo, Y. Sato, S. Matsumoto and N. Setaka, J. Crystal Growth, 62, 642 (1983)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Saito, S. Matsuda and S. Nogita, Journ. Mat. Sci. Letters, 5, 565 (1986)CrossRefGoogle Scholar
  55. 55.
    A.R. Badzian and T. Badzian, Proceedings of the Fifteenth International Conference on Metallurgical Coatings Vol 1, 283, Elsevier Applied Science (1988)Google Scholar
  56. 56.
    Y. Liou, A. Inspektor, R. Weimer and R. Messier, Appl Phys Letters 55, 631 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    B.E. Williams, J.T. Glass, R.F. Davis, K. Kobashi and T. Horiuchi, J. Vac Sci Technol A, Vac Surf Films 6, 1819 (1988)CrossRefGoogle Scholar
  58. 58.
    K. Kobashi, K. Nishimura, Y. Kawate and T. Horiuchi, J. Vac Sci Technol A, Vac Surf Films 6, 1816 (1988)ADSCrossRefGoogle Scholar
  59. 59.
    A.R. Badzian, T. Badzian, R. Roy, R. Messier, K.E. Spear, Mater Res Bull 23, 531 (1988)CrossRefGoogle Scholar
  60. 60.
    K. Kobashi, K. Nishimura, Y. Kawate and T. Horiuchi, Phys Rev B38, 4067 (1988)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Saito, K. Sato, H. Tanaka and H. Miyadera, J. Mater. Sci 24, 293 (1989)ADSCrossRefGoogle Scholar
  62. 62.
    L. Vandenbulcke, P. Bou, R. Herbin, V. Cholet and C. Beny, Colloq Phys 5, 177 (1989)Google Scholar
  63. 63.
    R. Martin and M.W. Hill, Appl Phys Letters, 55, 2248 (1989)ADSCrossRefGoogle Scholar
  64. 64.
    R. Haubner and B. Lux, Int J. Refractory & Hard Metals 5, 210 (1987)Google Scholar
  65. 65.
    C. Chen, Y.C. Huang, S. Hosomi and I. Yoshida, Mater Res Bull 24, 87 (1989)CrossRefGoogle Scholar
  66. 66.
    H. Kawarada, K. Mar, and J. Suzuki, Jap J Appl Phys 27, L683 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    W. Hsu, D.M. Tung, E.A. Fuchs, K.F. McCarty and A. Joshi, Appl Phys Letters 55, 2739 (1989)ADSCrossRefGoogle Scholar
  68. 68.
    W. Zhu, C.A. Randall, A.R. Badzian and R. Messier, J. Vac. Sci. Technol A Vac Surface Films 7, 2315 (1989)ADSCrossRefGoogle Scholar
  69. 69.
    J.D. Jackson, “Classical Electrodynamics”, John Wiley & Sons, New York (1962)Google Scholar
  70. 70.
    J. Keiser and M. Neusch, Thin Solid Films 118, 203 (1984)ADSCrossRefGoogle Scholar
  71. 71.
    J.L. Franklin, S.A. Studniarz and P.K. Ghosh, J. Appl. Phys 39, 2052 (1968)ADSCrossRefGoogle Scholar
  72. 72.
    F.H. Dorman and F.K. Taggart, J. Microwave Power 5, 4 (1970)Google Scholar
  73. 73.
    K. Yanagihara and N. Niinomi, Proc Int Conf Ion Engineering Congr, pg 1475, Kyoto (1983)Google Scholar
  74. 74.
    M.M. Millard and E. Kay, J. Electrochem Soc 129, 160 (1982)CrossRefGoogle Scholar
  75. 75.
    S. Matsumoto, J. Mater. Sci. Letters, 4, 600 (1985)CrossRefGoogle Scholar
  76. 76.
    D.E. Meyer, R.O. Dillon and J.A. Woollam, J Vac Sci & Technol A 7 2325 (1989)ADSCrossRefGoogle Scholar
  77. 77.
    K. Akashi, T. Yoshida, S. Komatsu and Y. Mitsuda, J. Korean Inst Metals 24, 712 (1986)Google Scholar
  78. 78.
    D.E. Meyer, N.J. lanno, J.A. Woollam, A.B. Swartzlander and A.J. Nelson, J. Maters. Res 3, 1397 (1988)ADSCrossRefGoogle Scholar
  79. 79.
    H. Hayashi, Y. Ohnishi, K. Kobashi, K. Nishimura, K. Miyata and Y. Kawate, Kobelco Technol Rev 5, 14 (1989)Google Scholar
  80. 80.
    D.J. Vitkavage, R.A. Rudder, G.G. Fountain and R.J. Markunas, J. Vac. Sci Technol A5, 1812 (1988)ADSGoogle Scholar
  81. 81.
    S. Matsumoto, M. Nino and T. Kobayashi, Appl Phys Letters 51, 737 (1987)ADSCrossRefGoogle Scholar
  82. 82.
    T. Chonan, M. Uenura, S. Futaki and S. Nishi, Jap. Journ. Appl. Phys 28, L1058 (1989)ADSCrossRefGoogle Scholar
  83. 83.
    K. Suziki, A. Sawabe, H. Yasuda and T. Inuzuka, Appl. Phys. Letters, 2, 728 (1987)ADSCrossRefGoogle Scholar
  84. 84.
    F. Akatsuka, Y. Hirose and K. Komaki, Jap. Journ. Appl. Phys, 27, L1600 (1988)ADSCrossRefGoogle Scholar
  85. 85.
    K. Kurihara, K. Sasaki, M. Kawarada and N. Koshima, Appl Phys Letters, 52, 437 (1988)ADSCrossRefGoogle Scholar
  86. 86.
    K. Suzuki, A. Sawabe and T. Inuzuka, Jap. J. Appl. Phys, 22, 153 (1990)ADSCrossRefGoogle Scholar
  87. 87.
    Y. Mitsuda, T. Yoshida and K. Akashi, Rev Sci Instrum 60, 249 (1989)ADSCrossRefGoogle Scholar
  88. 88.
    S.Matsumoto, T. Kobayshi, M. Hino, T. Ishigaki and Y. Moriyoshi, 8th International Symposium on Plasma Chemistry, ISPC,8, Paper#57–03, p2458,Tokyo, (1987)Google Scholar
  89. 89.
    R.R. Baldwin, D.E. Hopkins and R.W. Walker, Trans Faraday Soc., 66, 189 (1970)CrossRefGoogle Scholar
  90. 90.
    C.P. Fenimore and G.W. Jones, J. Phys. Chem, 65, 2200 (1961)CrossRefGoogle Scholar
  91. 91.
    C.P. Fenimore and G.W. Jones, 1962 Symp. Int. Combust. Proc.,9th, 597 (1963)Google Scholar
  92. 92.
    Y. Hirose and N. Kondo, Program and Book of Abstracts, Japan Applied Physics 1988 Spring Meeting, pg 434 (March 29, 1988 )Google Scholar
  93. 93.
    S. Yazu, S. Sato and N. Fujimori, SPIE Proceedings (San Diego, August 1620, 1988 )Google Scholar
  94. 94.
    L.M. Hanssen, W.A. Carrington, D.B. Oakes, J.E. Butler and K.A. Snail, 1989 Diamond Technology Initiative Symposium, Paper T7, (July 11–13, 1989)Google Scholar
  95. 95.
    D.G. Goodwin, 1989 Diamond Technology Initiative Symposium, Paper T15, (July 11–13, 1989)Google Scholar
  96. 96.
    M.A. Cappelli and P.H. Paul, 1989 Diamond Technology Initiative Symposium, Paper W1, (July 11–13, 1989)Google Scholar
  97. 97.
    M. Murakawa, S. Takeuchi and Y. Hirose, Surface & Coatings Technol 39–40, 1 (1989)Google Scholar
  98. 98.
    R.G. Vardiman, C.L. Vold, K.A. Snail, J.E. Butler and C.S. Pande, Mater Letters 8, 468 (1989)CrossRefGoogle Scholar
  99. 99.
    L.M. Hanssen, W.A. Carrington, J.E. Butler and K.A. Snail, Mater Letters 7, 289 (1989)CrossRefGoogle Scholar
  100. 100.
    Y. Matsui, A. Yuuki, M. Sahara and Y. Hirose, J. Appl. Phys ? 28, 1718 (1989)CrossRefGoogle Scholar
  101. 101.
    W.A. Carrington, L.M. Hanssen, K.A. Snail, D.B. Oakes and J.E. Butler, Metall Trans 20A, 1282 (1989)CrossRefGoogle Scholar
  102. 102.
    Irvin Glassman, “Combustion”, Academic Press, New York (1977)Google Scholar
  103. 103.
    Y. Tzeng, P.J. Kung, R. Zee, K. Legg, H. Solnick-Legg, Appl Phys Letters 53, 2326 (1988)ADSCrossRefGoogle Scholar
  104. 104.
    P.J. Kung and Y. Tzeng, J. Appl. Phys 66, 4676 (1988)ADSCrossRefGoogle Scholar
  105. 105.
    R.A. Rudder, J.B. Posthill and R.J. Markunas, Electronic Letters 25, 1220 (1989)ADSCrossRefGoogle Scholar
  106. 106.
    K. Kitahama, K. Hirata, H. Nakamatsu,S. Kawai, N. Fujumori, T. Imai, H. Yoshino and A. Doi, Appl Phys Letters 43, 634 (1986)ADSCrossRefGoogle Scholar
  107. 107.
    K. Kitahama, Appl Phys Letters 52, 1812 (1988)ADSCrossRefGoogle Scholar
  108. 108.
    I.G. Varshayskaja and A.V. Lavrientiev, Arch Nauki O Mater 7, 127 (1986)Google Scholar
  109. 109.
    R.S. Lewis, T. Ming, J.F. Wacker, E. Anders and E. Steel, Nature 326, 160 (1987)ADSCrossRefGoogle Scholar
  110. 110.
    T.J. Wdowiak, Nature 328, 385 (1987)ADSCrossRefGoogle Scholar
  111. 111.
    J.A. Nuth, Astrophysics and Space Science 139, 103 (1987)ADSCrossRefGoogle Scholar
  112. 112.
    R.S. Lewis, E. Anders and B.T. Draine, Nature 339, 117 (1989)ADSCrossRefGoogle Scholar
  113. 113.
    P. Badziag, W.S. Verwoerd, W.P. Ellis and N.R. Greiner, Nature 343, 244 (1990)ADSCrossRefGoogle Scholar
  114. 114.
    A.R. Patel and K.A. Cherian, Indian J. Pure & Appl Phys 19, 803 (1981)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Thomas R. Anthony
    • 1
  1. 1.General Electric Corporate Research & Development CenterSchenectadyUSA

Personalised recommendations