Deposition Experiments with Separated Atomic Hydrogen and CH4 Sources

  • Pierre Joeris
  • Carsten Benndorf
Part of the NATO ASI Series book series (NSSB, volume 266)


The mechanism of low pressure diamond deposition is a matter of high interest not only for researchers but also for those who want to apply these films. Only a deep insight into the deposition process will allow the adequate design (eg. transparency, graining etc.) of diamond films for the various fields of application.


Diamond Film Plasma Column Microwave Plasma Microwave Discharge Deposition Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tsuda, M. Nakajima, and S. Oikawa, Epitaxial Growth Mechanism of Diamond Crystal in CH4–H2 Plasma, J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
  2. 2.
    M. Tsuda, M. Nakajima, and S. Oikawa, The Importance of The Positively Charged Surface for the Epitaxial Growth of Diamonds at Low Pressure, Jap. J. Appl. Phys., Vol. 26, No. 5, May, L527 (1987).Google Scholar
  3. 3.
    M. Frenklach and K.E, Spear, Growth Mechanism of Vapour- Deposited Diamond, J. Mater. Res. 3 (1), 133 (1988).Google Scholar
  4. 4.
    F.G. Celii, F.E. Pehrsson, H.-T. Wang, and J.E. Butler, Infrared Detection of Gaseous Species During the Filament-Assisted Growth of Diamond, Appl. Phys. Lett. 52 (24), 2043, (1988).Google Scholar
  5. 5.
    F.G. Celii and J.E. Butler, Hydrogen Atom Detection in the Filament-Assisted Diamond Growth, Appl. Phys. Lett. 54 (11), 1031 (1989).Google Scholar
  6. 6.
    S.J. Harris and A.M. Weiner, Measurement of Stable Species Present During Filament Assisted Diamond Growth, Appl. Phys. Lett. 53 (17), 1605 (1988).Google Scholar
  7. 7.
    D.N. Belton, S.J. Harris, S.J. Schmieg, A.M. Weiner, and T.A. Perry, In Situ Characterization of Diamond Nucleation and Growth, Appl. Phys. Lett. 54(5), 416 (1989).Google Scholar
  8. 8.
    S.J. Harris and A.M. Weiner, Effects of Oxygen on Diamond Growth, Appl. Phys. Lett. 55 (21), 2179 (1989).Google Scholar
  9. 9.
    S.J. Harris, D.N. Belton, A.M. Weiner, and S.J. Schmieg, Diamond Formation on Platinum, J. Appl. Phys. 66 (11), 5353 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Mucha, D.L. Flamm, and D.E. Ibbotson, On the role of Oxygen and Hydrogen in Diamond Forming Discharges, J. Appl. Phys. 65 (9), 3448 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Kawahara, Decomposition of Hydrocarbons in a Microwave Discharge. I. Methane. Effect of Power, J. Phys. Chem. Vol. 73, No. 6, 1648 (1969).Google Scholar
  12. 12.
    L.R. Martin and M.W. Hill, Diamond Film Synthesis in a Chemically Simplified System, Appl. Phys. Lett. 55 (21), 2248 (1989).Google Scholar
  13. 13.
    J. Warnatz, Rate Coefficients in the C/H/O System, in: “Combustion Chemistry”, W.C. Gardiner, Jr., ed., Springer, New York (1984).Google Scholar
  14. 14.
    A.A. Sepehrad, R.M. Marshall, and H. Purnell, Reaction between Hydrogen Atoms and Methane, J.C.S. Faraday I, 75, 835 (1979).CrossRefGoogle Scholar
  15. 15.
    E.L. Tollefson and D.L. Le Roy, The Reaction of Atomic Hydrogen with Acetylene, J. Chem. Phys., Vol. 16, No. 11, 1057 (1948).ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Meiners and D.B. Alford, The Design of a Microwave Plasma Source, Rev. Sci. Instr. 57(2),164 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Pierre Joeris
    • 1
  • Carsten Benndorf
    • 1
  1. 1.Institut für Physikalische ChemieUniversität HamburgHamburg 13Germany

Personalised recommendations