Advertisement

A Step Back: Hydrogen Abstraction from Methane Using a Semiempiracal Molecular Orbital Method

  • Steven M. Valone
Part of the NATO ASI Series book series (NSSB, volume 266)

Abstract

Several studies have now been completed using semiempirical molecular orbital methods1 to learn about various aspects of diamond growth.2–4 Whole reaction mechanisms for diamond epitaxy have been proposed on the basis of these calculations with supporting evidence from experiment. Attempts have been made to understand the roles of hydrogen atoms, methyl groups, acetylene groups and charged species in diamond film growth from both hot filament and plasma sources. Based on previous testing of the semiempirical molecular orbital method used here1 and in the previous studies, it seemed safe to assume that reasonable answers would be forthcoming.

Keywords

Potential Energy Surface Diamond Film Hydrogen Abstraction Semiempirical Method Diamond Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc. 97, 1285 (1975);CrossRefGoogle Scholar
  2. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4907 (1977);CrossRefGoogle Scholar
  3. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985);CrossRefGoogle Scholar
  4. M. J. S. Dewar and D. M. Storch, J. Am. Chem. Soc. 107, 3898 (1977).CrossRefGoogle Scholar
  5. 2.
    M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780 (1986)CrossRefGoogle Scholar
  6. M. Tsuda, M. Nakajima, and S. Oikawa, Japan. J. Appl. Phys. 26, L527 (1987).ADSCrossRefGoogle Scholar
  7. 3.
    D. Huang, M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
  8. 4.
    S. M. Valone, “Possible Behavior of a Diamond (111) Surface in Methane/Hydrogen Systems,” submitted.Google Scholar
  9. 5.
    S. P. Walch, J. Chem. Phys. 72, 4932 (1980);ADSCrossRefGoogle Scholar
  10. G. C. Schatz, S. P. Walch and A. F. Wagner, J. Chem. Phys. 73, 4536 (1980)ADSCrossRefGoogle Scholar
  11. G. C. Schatz, A. F. Wagner and T. H. Dunning, Jr., J. Phys. Chem. 88, 221 (1984);CrossRefGoogle Scholar
  12. P. J. Hay and T. H. Dunning, Jr., J. Chem. Phys. 64, 5077 (1976).CrossRefGoogle Scholar
  13. 6.
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).ADSMATHCrossRefGoogle Scholar
  14. 7.
    G. G. Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).ADSMATHCrossRefGoogle Scholar
  15. 8.
    J. J. P. Stewart, J. Comp. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  16. J. J. P. Stewart, J. Comp. Chem. 10, 221 (1989).CrossRefGoogle Scholar
  17. 9.
    J. J. P. Stewart, MOPAC, A Semiempirical Molecular Orbital Program, QCPE 455 (1983).Google Scholar
  18. 10.
    D. Brenner, “Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films.” In press, Phys. Rev. B.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Steven M. Valone
    • 1
  1. 1.Materials Science and Technology DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations