Aging Processes in Diamond-Like Carbon and Carbon/Metal Films

  • Ludvik Martinu
Part of the NATO ASI Series book series (NSSB, volume 266)


Thin films deposited by nonequilibrium processes, such as in low pressure plasmas, are sensitive to aging due to the presence of free radicals, dangling bonds, defects, voids, internal stress and other features. Generally, several aspects of film stability or aging can be considered:
  1. A:

    spontaneous aging — internal material property characterized by the driving force to acquire minimum system energy without any intermediate agent;

  2. B:

    environmental aging — reaction with the ambient atmosphere (not “deliberately severe”);

  3. C:

    accelerated aging — post deposition treatment (deliberately severe) using various thermal, chemical, radiative, mechanical and other agents.



Film Stability Radio Frequency Discharge Radio Frequency Mode Plasma Polymer Film Effective Medium Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Angus, P. Koidl, S. Domitz, Carbon thin films, in: “Plasma Deposited Thin Films”, J. Mort, F. Jansen, eds., CRC Press, Boca Raton (1986).Google Scholar
  2. 2.
    H. Biederman, L. Martinu, Plasma polymer-metal composite films, in: “Plasma Deposition, Treatment and Etching of Polymers”, R. d’Agostino, ed., Academic Press, New York (1990).Google Scholar
  3. 3.
    J.M.E. Harper, J.J. Cuomo, R.J. Gambino and H.R. Kaufman, in: “Ion Bombardment Modification of Surfaces: Fundamentals and Applica-cations”, O. Auciello, R. Kelly, eds., Elsevier, Amsterdam (1984).Google Scholar
  4. 4.
    P. Koidl, Ch. Wild, B. Dischler, J. Wagner, M. Ramsteiner, in: “Amorphous Hydrogenated Carbon”, J.J. Pouch, S.A. Alterovitz, eds., Mater Sci. Forum, Vol. 52/53: 41 (1990).Google Scholar
  5. 5.
    L. Martinu, Amorphous carbon films, in: “High Energy Density Technologies in Materials Science”, F. Garbassi, E. Occhiello, eds., Kluwer Academic Publ., Dordrecht (1990).Google Scholar
  6. 6.
    C. Wild, P. Koidl, J. Wagner, Plasma deposition of a-C:H films: the role of process gas, plasma chemistry and plasma surface interactions, in: “Amorphous Hydrogenated Carbon Films”, P. Koidl, P. Oelhafen, eds., Proc. E-MRS, Vol. 17, Les Editions de Physique, Paris (1987).Google Scholar
  7. 7.
    J.C. Angus, F. Jansen, Dense “diamondlike” hydrocarbons as random covalent networks, J. Vac. Sci. Technol. A 6: 1778 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    H. Yasuda, “Plasma Polymerization”, Academic Press, New York (1985).Google Scholar
  9. 9.
    A.M. Wrobel, Aging process in plasma-polymerized organosilicon thin films, J. Macromol. Sci.-Chem. A22: 1089 (1985).CrossRefGoogle Scholar
  10. 10.
    L. Martinu, H. Biederman, J. Nedbal, Dielectric properties of fluoro-and chlorofluorocarbon films plasma polymerized in an RF glow discharge, Thin Solid Films 136: 11 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    J. Perrin, R.L. Siemens, E. Kay, Thermal transitions and dielectric relaxations in plasma-polymerized polytetrafluoroethylene, IBM Res. Rep. RJ 4792 (1985).Google Scholar
  12. 12.
    B. Dischler, Bonding and hydrogen incorporation in a-C:H studied by infrared spectroscopy, p. 189 in ref. 6.Google Scholar
  13. 13.
    C. Wild, P. Koidl, Network structure and thermal decomposition of plasma deposited a-C:H films studied by gas effusion spectroscopy, p. 207 in ref. 6.Google Scholar
  14. 14.
    S. Orzeszko, Bhola N. De, J.A. Woollam, J.J. Pouch, S.A. Alterovitz, D.C. Ingram, Thin film hermeticity: A quantitative analysis of diamondlike carbon using variable spectroscopic eliipsometry, J. Appl. Phvs. 64: 4175 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    C.J. Robinson, R.N. Payne, A.E. Bell, Hydrogenated amorphous carbon dielectric coatings for magneto-optic data storage media, J. Appl. Phys. 64: 4646 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    H. Biederman, L. Martinu, S. Nespurek, Aging effects in composite plasma polymer/metal films, in: Proc. 8th Int. Symp. Plasma Chem. (ISPC-8), K. Akashi, A. Kinbara, eds., Tokyo (1987), p. 1364.Google Scholar
  17. 17.
    L. Martinu, Optical response of composite plasma polymer/metal films in effective medium approach, Solar Energy Mater. 15: 21 (1987).CrossRefGoogle Scholar
  18. 18.
    R. dAgostino, L. Martinu, V. Pische, Effect of bias and temperature on the bulk and surface properties of gold containing plasma polymerized fluorocarbons, Plasma Chem. Plasma Process., in press.Google Scholar
  19. 19.
    L. Martinu, V. Pische, R. dAgostino, Surface Modification by plasma deposition of metal-filled polymers, in: Metallisation in Polymers, E. Sacher, J.J. Pireaux, S. Kowalczyk, eds., ACS Symp. Ser. 440, (1990), in press.Google Scholar
  20. 20.
    E. Kay, Ion and laser interactions as encountered in synthesis and utilisation of metal-containing polymers, Proc. E-MRS, Vol. 15, p. 355, Les Editions de Physique, Paris (1987).Google Scholar
  21. 21.
    D.I. Jones, A.D. Stewart, Properties of hydrogenated amorphous carbon films and the effects of doping, Phil. Mag. B 46: 423 (1982).CrossRefGoogle Scholar
  22. 22.
    R.E. Sah, B. Dischler, A. Bubenzer, P. Koidl, Amorphous carbon coatings prepared by high rate rf plasma deposition of fluorinated benzenes, Appl. Phys. Lett. 46: 739 (1985).Google Scholar
  23. 23.
    H. Biederman, L. Martinu, J. Zemek, Carbon and composite carbon metal films deposited from an rf discharge operated in organic gases, Vacuum 35: 447 (1985).CrossRefGoogle Scholar
  24. 24.
    C.P. Klages, R. Memming, Microstructure in physical properties of metal-containing hydrogenated carbon films, p. 609 in ref. 4.Google Scholar
  25. 25.
    C. Weissmantel, E. Ackerman, K. Bewilogna, G. Hecht, K. Kupfer, B. Rau, Structure property relationships of carbonaceous films grown under ion enhancement, J. Vac. Sci. Technol. A 4: 2892 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    H. Biederman, K. Kahoutek, Z. Chmel, V. Stary, R.P. Howson, Hard carbon and composite metal/hard carbon films prepared by a dc unbalanced planar magnetron, Vacuum 40: 251 (1990).CrossRefGoogle Scholar
  27. 27.
    N. Savvides, Diamondlike films and properties, p. 408 in ref. 4.Google Scholar
  28. 28.
    M.R. Wertheimer, M. Moisan, Comparison of microwave and lower frequency plasmas for thin film deposition and etching, J. Vac. Sci. Technol. A 3: 2643 (1985).ADSCrossRefGoogle Scholar
  29. 29.
    R. Claude, M. Moisan, M.R. Wertheimer, Z. Zakrzewski, Comparison of microwave and lower frequency discharges for plasma polymeriza- tion, Plasma Chem. Plasma Process. 7: 451 (1987).CrossRefGoogle Scholar
  30. 30.
    L. Martinu, J.E. Klemberg-Sapieha, M.R. Wertheimer, Dual-mode microwave/radio frequency plasma deposition of dielectric thin films, Appl. Phys. Lett. 54, 2645 (1989).Google Scholar
  31. 31.
    J.E. Klemberg-Sapieha, O.M. Küttel, L. Martinu, M.R. Wertheimer, Dual microwave/radio frequency plasma deposition of functional coatings, Thin Solid Films, (1990) in press.Google Scholar
  32. 32.
    O.M. Küttel, J.E. Klemberg-Sapieha, L. Martinu, M.R. Wertheimer, Energy fluxes in mixed microwave radio frequency plasma, Thin Solid Films 193, (1990), in press.Google Scholar
  33. 33.
    O.M. Küttel, L. Martinu, D. Poitras, J.E. Klemberg-Sapieha, M.R. Wertheimer, Diamond-like carbon films deposited in dual microwave/radio frequency plasma, Proc. E-MRS Meeting, Strasbourg, November 1990, submitted.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ludvik Martinu
    • 1
  1. 1.“Groupe des Couches Minces” (GCM) and Department of Engineering PhysicsEcole PolytechniqueMontrealCanada

Personalised recommendations