Advertisement

Preparation and Characterization of Doped a-C:H Films

  • K. Rohwer
  • P. Hammer
  • A. Helmbold
  • D. Bahnemann
  • D. Meissner
  • W. Hedderich
  • R. Hartmann
  • W. Ronge
Part of the NATO ASI Series book series (NSSB, volume 266)

Abstract

Amorphous hydrogenated carbon films are known to be extremely hard, wear-resistant and chemically inert1. In general, they are electrically insulating. Meyerson and Smith2,3 and Jones and Stewart4 showed that a-C:H can be made conductive by addition of the “classical” doping agents, i.e. PH3, B2H6, and N2. It has been discussed4,5,6 whether the term “doping” can be used with this materials like with crystalline semiconductors.

Keywords

Contact Resistance Amorphous Carbon Film Constant Current Source Crystalline Semiconductor Temperature Dependent Electrical Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.P. Klages and R. Memming, “Microstructure and Physical Properties of Metal-containing Hydrogenated Carbon Films” in: “Amorphous Hydrogenated Carbon”, J.J. Pouch, S.A. Alterovitz, eds., TransTech Publications (1989)Google Scholar
  2. 2.
    B. Meyerson and F.W. Smith, “Chemical modification of the electrical properties of hydrogenated amorphous carbon films”, Solid State Commun. 34: 531 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    B. Meyerson and F.W. Smith, “Thermopower of doped semiconducting hydrogenated amorphous carbon films”, Solid State Commun. 41: 23 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    D.I. Jones and Stewart, “Properties of hydrogenated amorphous carbon films and the effects of doping”, Philos. Mag. B 46: 423 (1982)Google Scholar
  5. 5.
    J. Robertson, “Clustering and gap states in amorphous carbon”, Philos. Mag. Lett. 57: 143 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    J. Robertson and E.P. O’Reilly, “Electronic and atomic structure of amorphous carbon”, Phys. Rev. B 35: 2946 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    H. Köberle, “Struktur und elektrische Leitfähigkeit von HF-Plasma-erzeugten metallhaltigen Kohlenwasserstoffschichten”, PhD Thesis, University of Hamburg (1989)Google Scholar
  8. 8.
    N.F. Mott, “Conduction in glasses containing transition metal ions”, J. NonCryst. Sol. 1: 1 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    A.L. Efros and B.I. Shklovskii, “Coulomb gap and low temperature conductivity of disordered systems”, J. Phys. C: Sol. State Phys. 8: L49 (1975); A.L. Efros, “Coulomb gap in disorderd systems”, J. Phys. C: Sol. State Phys. 9: 2021 (1976)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. Rohwer
    • 1
  • P. Hammer
    • 1
  • A. Helmbold
    • 1
  • D. Bahnemann
    • 1
  • D. Meissner
    • 1
  • W. Hedderich
    • 2
  • R. Hartmann
    • 2
  • W. Ronge
    • 2
  1. 1.Institut für Solarenergieforschung (ISFH)Hannover 1Germany
  2. 2.Battelle-Institut e.V.Frankfurt am Main 90Germany

Personalised recommendations