Mass-Spectroscopy of Sputtered Neutral Particles During the Growth of a-C:H Films

  • V. von Bonin
  • K. G. Tschersich
Part of the NATO ASI Series book series (NSSB, volume 266)


Despite of the scientific interest in amorphous hydrogen containing diamondlike films (a-C:H), their growth mechanism is not fully understood. One of the unclarified aspects is the mass balance during film growth. It has been observed that only a fraction of the carbon atoms hitting the sample surface are incorporated into the growing film. Angus et al. /1/ found carbon sticking-coefficients between 0.13 and 0.41 using hydrocarbon/argon-beams at 100 eV while Miyazawa et al. /2/reported sticking-coefficients of 0.53 and 0.26 using a mass-separated C+-beam of 300 eV and 600 eV, respectively. In both investigations the deposition coefficient was determined from film thickness measurements. Also our previous measurements /3/ with 600 eV ethane ions incident on various substrates raised questions concerning the nature of the channels which may balance the incoming carbon flux.


Film Growth Neutral Particle Growth Profile Auger Signal Average Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    J.C. Angus, M.J. Mirtich, E.G. Wintucky, ‘Ion beam deposition of amorphous carbon films with diamondlike properties’ in ’Metastable Material Formation by Ion Implantation’, Eds: S.T. Picraux, W.J. Choyke, Elsevier, Amsterdam 1982, S. 433Google Scholar
  2. /2/.
    T. Miyazawa, S. Misawa, S. Yoshida, S. Gonda, J. Appl. Phys. 55 (1), 188 (1984)ADSCrossRefGoogle Scholar
  3. /3/.
    K.G. Tschersich, U. Littmark, E-MRS-Meeting, Vol. X VII, June 1987Google Scholar
  4. /4/.
    L.P. Andersson, S. Berg, Vacuum 28 (10,11), 449–451 (1978)ADSCrossRefGoogle Scholar
  5. /5/.
    S. Berg, B. Gelin, M. Östling, S.M. Babulanam, J. Vac. Sci. Technol. A2 (2), 470–473 (1984)ADSGoogle Scholar
  6. /6/.
    S. Berg, B. Gelin, A. Svärdström, S.M. Babulanam, Vacuum 34 (10,11), 969–973 (1984)CrossRefGoogle Scholar
  7. /7/.
    S. Berg, C. Nender, B. Gelin, J. Vac. Sci. Technol. A4 (3), 448–452 (1986)ADSGoogle Scholar
  8. /8/.
    W. Eckstein, Surface and Interface Analysis, Vol. 14, 799–808 (1989)CrossRefGoogle Scholar
  9. /9/.
    A. Benninghoven, E.G. RUdenauer, H.W. Werner in Second Ion Mass Spectrometry, Chemical Analysis Vol. 86, John Wiley & Sons (1987)Google Scholar
  10. /10/.
    H. Gnaser, J. Fleischhauer, W.O. Hofer, Appl. Phys. A 37, 211–220 (1985)ADSCrossRefGoogle Scholar
  11. /11/.
    J.C. Angus, P. Koidl, S. Domitz in ‘Plasma Deposited Thin Films’ (Ed. J. Mort, F. Jansen), Chapter 4: ’Carbon Thin Films’, CRC Press, Boca Raton, Florida, USA (1986)Google Scholar
  12. /12/.
    K.G. Tschersich, J. Nucl. Mater. 162–164, 887 (1989)Google Scholar
  13. /13/.
    to be publishedGoogle Scholar
  14. /14/.
    P. Sigmund in Topics in Applied Physics, Vol. 47: Sputtering by Particle Bombardment I, R. Behrisch ( Ed. ), Springer Berlin 1981, S. 9Google Scholar
  15. /15/.
    P.C. Zalm, J. Vac. Sci. Technol. B2(2), 151 (1984)Google Scholar
  16. /16/.
    E. G. Spencer, P.H. Schmidt, D.C. Joy, F.J. Sansalone, Appl. Phys. Lett. 29, 118 (1976)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • V. von Bonin
    • 1
  • K. G. Tschersich
    • 1
  1. 1.Institut für Grenzflächenforschung und Vakuumphysik Association Euratom-KFAKFA JülichJülichFed. Rep. Germany

Personalised recommendations