Advertisement

Computer Modeling of C:H Film Growth

  • Wolfhard Möller
Part of the NATO ASI Series book series (NSSB, volume 266)

Abstract

Hydrogenated amorphous carbon films1–5 exhibit specific properties which render them suitable for a wide field of applications, such as optical coatings, hard mechanical coatings, protective coatings, electrically insulating films, and low-Z inner wall coatings in fusion devices.6 For their production, a number of different processes are available. Glow-discharge plasmaenhanced chemical vapour deposition is most widely employed. However, such films result also from hydrocarbon ion deposition7,8 and hydrogen implantation into graphite.9

Keywords

Hydrogen Concentration Layer Growth Plasma Deposition Incident Flux Collision Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C.Angus, P.Koidl, and S.Domitz in: “Plasma Deposited Thin Films”, J.Mort and F.Jansen, eds., CRC Press, Boca Rayton (1985)Google Scholar
  2. 2.
    P.Couderc and Y.Catherine, Thin Sol.Films 146:93 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    H.C.Tsai and D.B.Bogy, J.Vac.Sci.Techn. A5: 3287 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    C.Weissmantel, E.Ackermann, K.Bewilogua, G.Hecht, H.Kupfer, and B.Rau, J.Vac.Sci.Techn. A4: 2892 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    C.V.Deshpandey and R.F.Bunshah, J.Vac.Sci.Technol. A7: 2294 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    J.Winter, J.Nucl.Mater. 145–147: 131 (1987)Google Scholar
  7. 7.
    C.Weissmantel, J.Vac.Sci.Technol. 18–179 (1981)Google Scholar
  8. 8.
    D.Ugolini, J.Eitle, P.Oelhafen, and M.Wittmer, Appl.Phys. A48: 549 (1989)CrossRefGoogle Scholar
  9. 9.
    W.Möller, J.Nucl.Mater. 162–164: 138 (1989)Google Scholar
  10. 10.
    E.G.Spencer, P.H.Schmidt, D.C.Joy, and F.J.Sansalone,Appl.Phys.Lett. 29–118 (1976)Google Scholar
  11. 11.
    Y.Lifshits, S.R.Kasi, and J.W.Rabalais, Phys.Rev.Lett. 62–1290 (1989)Google Scholar
  12. 12.
    M.Frenklach and K.E.Spear, J.Mater.Res. 3–133 (1988)Google Scholar
  13. 13.
    Y.Catherine and P.Couderc, Thin Sol.Films 144–265 (1986)Google Scholar
  14. 14.
    G.L.Vandentop, M.Kawasaki, R.M.Nix, I.G.Brown, M.Salmeron, and G.A.Somorjai, Phys.Rev. B41: 3200 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    K.Tachibana, M.Nishida, H.Harima, and Y.Urano, J.Phys.D 17–27(1984)Google Scholar
  16. 16.
    L.E.Kline, W.D.Partlow, and W.E.Bies, J.Appl.Phys. 65–70(1989)Google Scholar
  17. 17.
    G.Smolinsky and M.J.Vasile, Int.J.Mass Spectr.Ion Phys. 16–137(1975)Google Scholar
  18. 18.
    M.J.Vasile and G.Smolinsky, Int.J.Mass Spectr.Ion Phys. 18–179(1975)Google Scholar
  19. 19.
    H.Toyoda, H.Kojima, and H.Sugai, Appl.Phys.Lett. 84–157(1979)Google Scholar
  20. 20.
    A.Bubenzer, B.Dischler, G.Brandt, and P.Koidl, J.Appl.Phys. 54–4590 (1983)Google Scholar
  21. 21.
    M.A.Tamor, J.A.Haire, C.H.Wu, and K.C.Hass, Appl.Phys. Lett. 54–123 (1989)Google Scholar
  22. 22.
    J.B.Pethica, P.Koidl, J.Gobrecht, and C.Schüler J.Vac.Sci.Technol. A3: 2391 (1985)ADSGoogle Scholar
  23. 23.
    J.W.Zou, K.Reichelt, K.Schmidt, and B.Dischler, J.Appl.Phys. 65–3914 (1989)Google Scholar
  24. 24.
    X.Jiang, K.Reichelt, and B.Stritzker, J.Appl.Phys. 66–5805 (1989)Google Scholar
  25. 25.
    W.J.Varhue, K.A.Pandelisev, and B.S.Shinseki, J.Appl.Phys. 67–3835 (1990)Google Scholar
  26. 26.
    Ch.Wild and P.Koidl, Appl.Phys.Lett. 51–1506 (1987)Google Scholar
  27. 27.
    D.Boutard, W.Möller, and B.M.U.Scherzer, Phys.Rev. B38: 2988 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    D.Boutard, B.M.U.Scherzer, and W.Möller, J.Appl.Phys. 65–3833 (1989)Google Scholar
  29. 29.
    H.Baumann, T.Rupp, K.Bethge, P.Koidl, and C.Wild in: “Amorphous Hydrogenated Carbon Films”, P.Koidl and P.Oelhafen, eds., Les Editions de Physique, Les Ulis (1987)Google Scholar
  30. 30.
    W.Dworschak, R.Kleber, A.Fuchs, B.Scheppat, G.Keller, K.Jung, and H.Ehrhardt Thin Sol.Films (in press)Google Scholar
  31. 31.
    W.Möller and B.M.U.Scherzer, J.Appl.Phys. 64–4860(1988)Google Scholar
  32. 32.
    W.Möller, P.Borgesen, and B.M.U.Scherzer, Nucl.Instrum.Meth. B19/20–826 (1987)Google Scholar
  33. 33.
    W.Möller and B.M.U.Scherzer, Appl.Phys.Lett. 50–1870 (1987)Google Scholar
  34. 34.
    C.Wild and P.Koidl, see ref. 29Google Scholar
  35. 35.
    J.Pillath, J.Winter, and F.Waelbroeck, J.Nucl.Mater. 162–164: 1046 (1989)Google Scholar
  36. 36.
    J.P.Boeuf and Ph.Belenguer, in: “Non-Equilibrium Processes in Partially Ionized Gases”, M.Capitelli and J.M.Bardsley, eds., NATO ASI Series (in press)Google Scholar
  37. 37.
    K.U.Riemann, J.Appl.Phys. 65–999 (1989)Google Scholar
  38. 38.
    H.Bergsdker, S.Nagata, M.Rubel, and B.Emmoth, see ref. 29Google Scholar
  39. 39.
    J.P.Biersack and L.G.Haggmark, Nucl.Instrum.Meth. 174–257 (1980)Google Scholar
  40. 40.
    S.T.Kang, R.Shimizu, and T.Okutani, Jap.J.Appl.Phys. 18–1717 (1979)Google Scholar
  41. 41.
    M.Hautala, Radiat.Eff. 51–35 (1980)Google Scholar
  42. 42.
    M.L.Roush, T.D.Andreadis, and O.F.Goktepe, Radiat.Eff. 55–119 (1981)Google Scholar
  43. 43.
    W.Möller and W.Eckstein, Nucl.Instrum.Meth. B2: 814 (1984)CrossRefGoogle Scholar
  44. 44.
    A.Schönborn, N.Hecking, and E.H.teKaat, Nucl.Instrum.Meth. B43: 170 (1989)CrossRefGoogle Scholar
  45. 45.
    W.Möller, W.Eckstein, and J.P.Biersack, Comp.Phys.Comm. 51–355 (1988)Google Scholar
  46. 46.
    W.Möller in “Materials Modification by High-Fluence Ion Beams”, R.Kelly and M.F.daSilva, eds., Kluwer Academic Publ., London (1989)Google Scholar
  47. 47.
    J.P.Biersack and W.Eckstein, Appl.Phys. A34: 73 (1984)Google Scholar
  48. 48.
    W.Eckstein and W.Möller, Nucl.Instrum.Meth. B7/8–727 (1985)Google Scholar
  49. 49.
    W.Möller, D.Bouchier, O.Burat, and V.Stambouli, Surf.Coat.Technol. (in press)Google Scholar
  50. 50.
    W.D.Wilson, L.G.Haggmark, and J.P.Biersack, Phys.Rev. B15: 2458 (1977)ADSCrossRefGoogle Scholar
  51. 51.
    J.Lindhard and M.Scharff, K.Dan.Vidensk.Selsk.Mat.Fys.Medd. 27–15 (1953)Google Scholar
  52. 52.
    O.S.Oen and M.T.Robinson, Nucl.Instrum.Meth. 132–647 (1976)Google Scholar
  53. 53.
    B.T. Kelly: “Physics of Graphite”, Applied Science Publishers (1981)Google Scholar
  54. 54.
    D.Bohm in “The Characteristics of Electrical Discharges in Magnetic Fields”, A.Guthrie and R.Wakerling, eds., McGraw-Hill, New York (1949)Google Scholar
  55. 55.
    P.Sander, M.Altebockwinkel, W.Storm, L.Wiedmann, and A.Benninghoven, J.Vac.Sci.Technol. B7: 517 (1989)Google Scholar
  56. 56.
    D.Ugolini, P.Oelhafen, and M.Wittmer, see ref.16Google Scholar
  57. 57.
    K.G.Tschersich,in: “Interfaces between Polymers, Metals, and Ceramics”, B.M.DeKoven, A.J.Gellman, R.Rosenberg, eds., Materials Research Soc., Pittsburgh (1989)Google Scholar
  58. 58.
    H.Baumann, priv. commun.Google Scholar
  59. 59.
    D.Boutard and W.Möller, J.Mater.Res. (in press)Google Scholar
  60. 60.
    D.Boutard, W.Möller, and B.M.U.Scherzer, J.Appl.Phys. 67–163 (1990)Google Scholar
  61. 61.
    D.Ugolini, J.Eitle, and P.Oelhafen, Vacuum (in press)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Wolfhard Möller
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM-AssociationGarchingFed. Rep. of Germany

Personalised recommendations