A Model for Characterising the Growth of Ruthenium on Amorphous Alumina by the use of the Auger Parameter

  • Nina Aas
  • Robin H. West
  • John C. Vickerman
Part of the NATO ASI Series book series (NSSB, volume 265)


With XPS enjoying a high popularity in surface science, mainly due to the ease with which quantitative information is obtained, recent developments of the technique have centred around gaining a better understanding of the inherent characteristics of the photoemission process. In its application to catalyst characterisation this has fuelled a discussion on the influence of particle size on binding energy shifts1–3. In this context, it has been realised that the X-ray induced Auger peaks in an XPS spectrum in the form of the Auger parameter can be used for a more detailed analysis. The Auger parameter α’ for any element is the relative difference between the binding energy of a photoelectron line E(PE)be and kinetic energy of a related Auger electron emission E(XAES)ke from same element on the same energy scale.


Alumina Substrate Alumina Film Amorphous Alumina Ruthenium Atom Auger Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.G. Mason, Phys. Rev. B 27, 748 (1983)CrossRefGoogle Scholar
  2. 2.
    T.T.P. Cheung, Surf. Sci. 140, 151 (1984)CrossRefGoogle Scholar
  3. 3.
    T. Huizinga, H.FJ. Van’T Blik, J.C. Vis and R. Prins, Surf. Sci. 135, 580 (1983)CrossRefGoogle Scholar
  4. 4.
    D. L. Cocke, E.D. Johnson and R.P. Merrill, Catal. Rev.-Sci. Eng. 26, 163 (1984)CrossRefGoogle Scholar
  5. 5.
    N. Aas, B.H. Sakakini, R.H. West and J.C. Vickerman, Surf. Interface Anal. 16, 359 (1990)CrossRefGoogle Scholar
  6. 6.
    N. Aas, Ph.D. Ther.is, UMIST (1990)Google Scholar
  7. 7.
    J.P. Biberian and G.A. Somorjai, Appl. Surf. Sci. 2, 352 (1979)CrossRefGoogle Scholar
  8. 8.
    CD. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota 1979Google Scholar
  9. 9.
    CD. Wagner, Anal. Chem. 44, 967 (1972)CrossRefGoogle Scholar
  10. 10.
    CD. Wagner, Anal. Chem. 47, 1201 (1975)CrossRefGoogle Scholar
  11. 11.
    CD. Wagner, Faraday Discuss. Chem. Soc. 60, 291 (1975)CrossRefGoogle Scholar
  12. 12.
    S.W. Gaarenstroom and N. Winograd, J. Chem. Phys. 67, 3500 (1977)CrossRefGoogle Scholar
  13. 13.
    R.H. West and J.E. Castle, Surf. Interface Anal. 4, 68 (1982)CrossRefGoogle Scholar
  14. 14.
    CD. Wagner and A. Joshi, J. Electron Spectrosc. Relat. Phenom. 47, 283 (1988)CrossRefGoogle Scholar
  15. 15.
    B.W. Veal and A.P. Paulikas, Phys. Rev. B 31, 5399 (1985)CrossRefGoogle Scholar
  16. 16.
    G. Moretti, Surf Interface Anal. 16, 159 (1990)CrossRefGoogle Scholar
  17. 17.
    D.K.G. de Boer, C Haas and G.A. Sawatzky, Phys. Rev. B 29, 4401 (1984)CrossRefGoogle Scholar
  18. 18.
    J.R. Tessman, A.H. Kahn and W. Shockley, Phys. Rev. 92, 890 (1953)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Nina Aas
    • 1
  • Robin H. West
    • 1
  • John C. Vickerman
    • 1
  1. 1.Centre for Surface and Materials Analysis (CSMA), Department of ChemistryUMISTManchesterUK

Personalised recommendations