Characterization of Heterogeneous Catalysts by Vibrational Spectroscopies

  • Helmut Knözinger
Part of the NATO ASI Series book series (NSSB, volume 265)


Vibrational spectroscopies are certainly among the most promising and most widely used methods for catalyst characterization. This is due to the fact that very detailed information on molecular structure and symmetry can be obtained from vibrational spectra. Also most importantly, several vibrational spectroscopies can be applied under in situ conditions and they can very successfully be used for studies of ill-defined high-surface area porous materials.


Raman Spectroscopy Probe Molecule Lewis Acid Site Vibrational Spectroscopy Binary Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.H. Little, “Infrared Spectroscopy of Adsorbed Species”, Academic Press, New York, 1966.Google Scholar
  2. 2.
    M. L. Hair, “Infrared Spectroscopy in Surface Chemistry”, Dekker, New York, 1967.Google Scholar
  3. 3.
    A. V. Kiselev and V. I. Lygin, “Infrared Spectra of Surface Compounds”, Wiley, New York, Toronto, 1975.Google Scholar
  4. 4.
    W. N. Delgass, G. L. Haller, R. Kellerman and J. H. Lunsford, “Spectroscopy in Heterogeneous Catalysis”, Academic Press, New York, San Francisco, London, 1979.Google Scholar
  5. 5.
    A. T. Bell and M. L. Hair, “Vibrational Spectroscopies for Adsorbed Species”, ACS Symposium Series 137, Amer. Chem. Soc, Washington, D. C., 1980.CrossRefGoogle Scholar
  6. 6.
    G. Kortüm, “Reflexionsspektroskopie”, Springer, Berlin, 1969.Google Scholar
  7. 7.
    M. P. Fuller and P. R. Griffiths, Anal. Chem. 50: 1906 (1978).CrossRefGoogle Scholar
  8. 8.
    P. J. Brimmer and P. R. Griffiths, Appl. Spectrosc. 42: 242 (1988).CrossRefGoogle Scholar
  9. 9.
    T. Egerton and A. H. Hardin, Catal. Rev.-Sci. Eng. 11:1 (1975).CrossRefGoogle Scholar
  10. 10.
    R. P. Cooney, G. Curthoys and T. T. Nguyen, Advan. Catal. 24:293 (1975).CrossRefGoogle Scholar
  11. 11.
    J. M. Stencel, “Raman Spectroscopy for Catalysis”, Van Nostrand Reinhold, New York, 1990.Google Scholar
  12. 12.
    G. L. Haller, R. W. Rice and Z. C. Wan, Catal. Rev.-Sci.Ena. 13:259 (1976).CrossRefGoogle Scholar
  13. 13.
    Y. H. Pao, “Optoacoustic Spectroscopy and Detection”, Academic Press, New York, 1977.Google Scholar
  14. 14.
    A. Rosencwaig, “Photoacoustics and Photoacoustic Spectroscopy”, Wiley, Chichester, 1980.Google Scholar
  15. 15.
    J. C. Wright, Appl. Spectrosc. 34:151 (1980).CrossRefGoogle Scholar
  16. 16.
    Y. R. Shen, in: “Chemistry and Structure at Interfaces”, R. B. Hall and A. B. Ellis, eds., VCH Publishers, Inc., Deerfield Beach, 1986, p. 151.Google Scholar
  17. 17.
    G. Ertl and J. Küppers, “Low Energy Electrons and Surface Chemistry”, Verlag Chemie, Weinheim, 1974.Google Scholar
  18. 18.
    A. V. Kiselev and V. I. Lygin, Russ Chem. Rev. 31:175 (1962).CrossRefGoogle Scholar
  19. 19.
    C. H. Rochester, Advan. Colloid Interf. Sci. 12:43 (1980)CrossRefGoogle Scholar
  20. 19a.
    C. H. Rochester, Progr. Colloid Polvm. Sci. 67:7 (1980).CrossRefGoogle Scholar
  21. 20.
    H. Knözinger, Acta Cient. Venez. 24, Supl. 2:76 (1973).Google Scholar
  22. 21.
    P. Basu, T. H. Ballinger and J. T. Yates, Jr., Rev. Sci.Instrum. 59:1321 (1988).CrossRefGoogle Scholar
  23. 22.
    E. Gallei and E. Schadow, Rev. Sci. Instrum. 45:1504 (1974).CrossRefGoogle Scholar
  24. 23.
    W. W. Wendlandt and H. G. Hecht, “Reflectance Spectroscopy”, Plenum, New York, 1968.Google Scholar
  25. 24.
    E. H. Korte and A. Otto, Appl. Spectrosc. 42:38 (1988).CrossRefGoogle Scholar
  26. 25.
    J. Mink and G. Keresztury, Croat. Chem. Acta 61:731 (1988).Google Scholar
  27. 26.
    J. Mink and G. Kersztury, Proc. SPIE — Inc. Soc. Opt. Eng. 1145 (1989), (CA 112:87360v(1990)).Google Scholar
  28. 27.
    R. Z. Garrell, Anal. Chem. 61:401A (1989).Google Scholar
  29. 28.
    J. J. Freeman, J. Heaviside, P. J. Hendra, J. Prior and E. S. Reid, Appl. Spectrosc. 35:196 (1981).CrossRefGoogle Scholar
  30. 29.
    F. R. Brown, L. E. Makovsky and K. H. Rhee, Appl. Spectrosc. 31:563 (1977).CrossRefGoogle Scholar
  31. 30.
    C. P. Cheng, J. D. Ludowise and G. L. Schrader, Appl. Spectrosc. 34:146 (1980).CrossRefGoogle Scholar
  32. 31.
    B. Vielhaber and H. Knözinger, Appl. Catal. 26:375 (1986).CrossRefGoogle Scholar
  33. 32.
    H. Zeilinger, G. Mestl and H. Knözinger, to be published.Google Scholar
  34. 33.
    D. D. Saperstein and A. J. Rein, J. Phys. Chem. 81:2134 (1977).CrossRefGoogle Scholar
  35. 34.
    H. Jeziorowski and H. Knözinger, Chem. Phys. Letters 51:519 (1977).CrossRefGoogle Scholar
  36. 35.
    H. Jeziorowski and H. Knözinger, J. Phys. Chem. 83:1166 (1979).CrossRefGoogle Scholar
  37. 36.
    H. Jeziorowski and H. Knözinger, Chem. Phys. Letters 42:162 (1976).CrossRefGoogle Scholar
  38. 37.
    M. Cardona, “Modulation Spectroscopy”, in: “Solid State Physics”, Suppl. 2, F. Seitz, D. Turnbull and E. Ehrenreich, eds., Academic Press, New York, 1969.Google Scholar
  39. 38.
    F. L. Galeener, Chem. Phvs. Letters 48:7 (1977)CrossRefGoogle Scholar
  40. 39.
    S. Brückner, H. Jeziorowski and H. Knözinger, Chem. Phys.Letters 105:218 (1984).CrossRefGoogle Scholar
  41. 40.
    P. J. Hendra and H. Mould, Intern. Laboratory, 1988.Google Scholar
  42. 41.
    B. C. Chase, Anal. Chem. 59:881A (1987).CrossRefGoogle Scholar
  43. 42.
    P. J. Hendra, C. Passingham, G. M. Warnes, R. Burch and D. J. Rawlence, Chem. Phvs. Letters 164:178 (1989).CrossRefGoogle Scholar
  44. 43.
    J. Corset, P. Dhamelincourt and J. Barbillat, Chem. Britain 25:612 (1989).Google Scholar
  45. 44.
    J. Leyrer, D. Mey and H. Knözinger, J. Catal. 124:349 (1990).CrossRefGoogle Scholar
  46. 45.
    H. — P. Boehm and H. Knözinger, in: “Catalysis — Science and Technology”, J. R. Anderson and M. Boudart, eds., Springer, Berlin, Heidelberg, New York, Vol. 4, p. 39, 1983.Google Scholar
  47. 46.
    R. S. McDonald, J. Phvs. Chem. 62:1168 (1958).CrossRefGoogle Scholar
  48. 47.
    K. Klier, J. Chem. Phvs. 58:737 (1973).CrossRefGoogle Scholar
  49. 48.
    A. A. Tsyganenko and V. N. Filimonov, J. Mol. Structure 19:579 (1973).CrossRefGoogle Scholar
  50. 49.
    H. Knözinger and P. Ratnasamy, Catal. Rev.-Sci. Eng. 17:31 (1978).CrossRefGoogle Scholar
  51. 50.
    E. P. Smirnov and A. A. Tsyganenko, React. Kinet. Catal.Letters 7:425 (1977).CrossRefGoogle Scholar
  52. 51.
    H. Knözinger, Advan. Catal. 25:184 (1976).CrossRefGoogle Scholar
  53. 52.
    M. I. Zaki and H. Knözinger, Mater. Chem. Phys. 17:201 (1987).CrossRefGoogle Scholar
  54. 53.
    H. Knözinger, in: “Acid-Base Catalysis”, K. Tanabe, H. Hattori, T. Yamaguchi and T. Tanaka, eds., Kodansha, Tokyo, 1989, p. 147.Google Scholar
  55. 54.
    T. P. Beebe, P. Gelin and J. T. Yates, Jr., Surface Sci. 148:526 (1984).CrossRefGoogle Scholar
  56. 55.
    L. M. Kustov, V. B. Kazansky, S. Beran, L. Kubelková and P. Jiru, J. Phys. Chem. 91:5247 (1987).CrossRefGoogle Scholar
  57. 56.
    D. Scarano, A. Zecchina and A. Relier, Surface Sci. 198:11 (1988).CrossRefGoogle Scholar
  58. 57.
    A. A. Tsyganenko, L. A. Denisenko, S. M. Zverev and V. N. Filimonov, J. Catal. 94:10 (1985).CrossRefGoogle Scholar
  59. 58.
    M. I. Zaki and H. Knözinger, J. Catal. 119:311 (1989).CrossRefGoogle Scholar
  60. 59.
    E. V. Hoefs, J. R. Monnier and G. W. Keulks, J. Catal. 57:331 (1979).CrossRefGoogle Scholar
  61. 60.
    J. F. Brazdil, M. Mehicic, L. C. Glaeser, M. A. S. Hazle and R. K. Grasselli, ACS Svmp. Ser. 288:26 (1985).CrossRefGoogle Scholar
  62. 61.
    H. Knözinger, “Heterogeneous Catalysts and Catalytic Processes”, this volume.Google Scholar
  63. 62.
    H. Knözinger, Proc. 9th Intern. Congr. Catal. Calgary, 1988, Vol. 5, M. J. Phillips and M. Ternan, eds., The Chemical Institute of Canada, Ottawa, 1989, p. 20.Google Scholar
  64. 63.
    H. Jeziorowski and H. Knözinger, J. Phys. Chem. 83:1166 (1979).CrossRefGoogle Scholar
  65. 64.
    J. Leyrer, R. Margraf, E. Taglauer and H. Knözinger, SurfaceSci. 201:603 (1988).Google Scholar
  66. 65.
    J. Leyrer, M. I. Zaki and H. Knözinger, J. Phys. Chem. 90: 4775 (1986).CrossRefGoogle Scholar
  67. 66.
    M. Cornac, A. Janin and J. C. Lavalley, Infrared Phys. 24:143 (1984).CrossRefGoogle Scholar
  68. 67.
    S. M. Riseman, S. Bandyopadhyay, F. E. Massoth and E. M. Eyring, Appl. Catal. 16:29 (1985).CrossRefGoogle Scholar
  69. 68.
    F. Hilbrig, Dissertation, Universität München, 1989.Google Scholar
  70. 69.
    J. Polz, H. Zeilinger, B. Müller and H. Knözinger, J. Catal. 120:22 (1989).CrossRefGoogle Scholar
  71. 70.
    R. Prins, V. H. J. de Beer and G. A. Somorjai, Catal. Rev. -Sci. Ena. 31:1 (1989).CrossRefGoogle Scholar
  72. 71.
    J. Cyrys, J. A. R. van Veen and H. Knözinger, unpublished results.Google Scholar
  73. 72.
    E. Delgado, G. A. Fuentes, C. Hermann, G. Kunzmann and H. Knözinger, Bull. Soc. Chem. Bel. 93:735 (1984).CrossRefGoogle Scholar
  74. 73.
    H. Topsoe, B. S. Clausen, N.-Y. Topsoe and E. Pedersen, I &EC Fundamentals 25:25 (1986).CrossRefGoogle Scholar
  75. 74.
    N. Sheppard and T. T. Nguyen, Advan. Infrared Raman Spectrosc. 5:67 (1978).Google Scholar
  76. 75.
    F. Solymosi and M. Pásztor, J. Phys. Chem. 89:4783 (1985)CrossRefGoogle Scholar
  77. 75a.
    F. Solymosi and M. Pásztor, J. Phys. Chem. 90:5312 (1986).CrossRefGoogle Scholar
  78. 76.
    P. Basu, D. Panayotov and J. T. Yates, Jr., J. Phys. Chem. 91:3133 (1987).CrossRefGoogle Scholar
  79. 77.
    S. A. Stevenson, A. Lisitsyn and H. Knözinger, J. Phys.Chem. 94:1576 (1990).CrossRefGoogle Scholar
  80. 78.
    B. C. Gates, L. Guczi and H. Knözinger, eds., “Metal Clusters in Catalysis”, Elsevier, Amsterdam, 1986.Google Scholar
  81. 79.
    H. F. J. van’t Blik, J. B. A. D. van Zon, T. Huizinga, J. С Vis, D. C. Koningsberger and R. Prins, J. Amer. Chem. Soc. 107:3139 (1985).CrossRefGoogle Scholar
  82. 80.
    W. M. H. Sachtler, Proc. 8th Intern. Congr. Catal., Berlin, 1984, Vol.1, Dechema, Frankfurt and Verlag Chemie, Weinheim, 1984, p. 151.Google Scholar
  83. 81.
    M. Ichikawa and T. Fukushima, J. Phys. Chem. 89:1564 (1985).CrossRefGoogle Scholar
  84. 82.
    C. P. Horwitz and D. F. Shriver, Adv. Organometa1. Chem. 23:219 (1984).CrossRefGoogle Scholar
  85. 83.
    H. Knözinger, in: “Homogenous and Heterogeneous Catalysis”, Yu. Yermakov and V. Likholobov, eds., VNU Press, Utrecht, 1986, p. 789.Google Scholar
  86. 84.
    R. J. Kokes and A. L. Dent, Advan. Catal. 22:1 (1972).CrossRefGoogle Scholar
  87. 85.
    S. A. Stevenson, J. A. Dumesic, R. T. K. Baker and E. Rukkenstein, “Metal-Support Interactions in Catalysis, Sintering and Redispersion”, Van Nostrand Reinhold, New York, 1987.Google Scholar
  88. 86.
    L. Kraus, M. I. Zaki, H. Knözinger and B. Tesche, J. Mol.Catal. 55:55 (1989).CrossRefGoogle Scholar
  89. 87.
    P. A. Jacobs, in ref.78, p. 357.Google Scholar
  90. 88.
    L. L. Sheu, H. Knözinger and W. M. H. Sachtler, Catal.Letters 2:129 (1989).CrossRefGoogle Scholar
  91. 89.
    L. L. Sheu, H. Knözinger and W. M. H. Sachtler, J. Amer. Chem. Soc. 111:8125 (1989).CrossRefGoogle Scholar
  92. 90.
    R. A. van Santen, “Quantum Chemistry of Surface Chemical Reactivity”, this volume.Google Scholar
  93. 91.
    J. H. Sinfelt, “Bimetallic Catalysts: Discoveries, Concepts and Applications”, Wiley, New York, 1983.Google Scholar
  94. 92.
    R. Liu, B. Tesche and H. Knözinger, J. Catal., in print.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Helmut Knözinger
    • 1
  1. 1.Institut für Physikalische ChemieUniversität MünchenMünchen 2Germany

Personalised recommendations