Molecular Dynamics for Reactions of Heterogeneous Catalysis

  • A. P. J. Jansen
Part of the NATO ASI Series book series (NSSB, volume 265)


An overview is given of Molecular Dynamics, and numerical integration techniques, system initialization, boundary conditions, force representation, statistics, system size, and simulations duration are discussed. Examples from surface science are used to illustrate the pros and cons of the method. Two new methods are presented with which it is possible to compute reaction rates and reaction mechanisms in spite of activation barriers that are much higher than thermal energies, and results are shown for Xe desorption from Pd(100).


Molecular Dynamics Molecular Dynamics Simulation Activation Barrier Schrodinger Equation Phase Space Density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Alder and T.E. Wainwright, Phase Transition for a hard Sphere System, J. Chem. Phys. 27:1208 (1957).CrossRefGoogle Scholar
  2. 2.
    B.J. Alder and T.E. Wainwright, Studies in Molecular Dynamics: II. Behaviour of a Small Number of Elastic Spheres, J. Chem. Phys. 33:1439 (1960).CrossRefGoogle Scholar
  3. 3.
    G. Ciccotti and W.G. Hoover, eds., Proceedings of the International School of Physics “Enrico Fermi”, Course XCVII, North-Holland, Amsterdam (1986).Google Scholar
  4. 4.
    W.G. Hoover, Molecular Dynamics, Springer, Berlin (1986).Google Scholar
  5. 5.
    D. Frenkel, Free-Energy Computation and First-Order Phase Transitions, in Proceedings of the International School of Physics “Enrico Fermi”, Course XCVII, G. Ciccotti and W.G. Hoover, ed., North-Holland, Amsterdam (1986).Google Scholar
  6. 6.
    W.F. van Gunsteren and P.K. Weiner, eds., Computer Simulation of Biomolecular Systems, ESCOM, Leiden (1989).Google Scholar
  7. 7.
    S. Nosé, A Molecular Dynamics Method for Simulations in the Canonical Ensemble, Mol. Phys. 52:255 (1984).CrossRefGoogle Scholar
  8. 8.
    S. Nosé, A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys. 81:511 (1984).CrossRefGoogle Scholar
  9. 9.
    E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report No. LA-1940 (1955).Google Scholar
  10. 10.
    E. Fermi, Collected Papers of Enrico Fermi, University of Chicago Press, Chicago (1962).Google Scholar
  11. 11.
    J.L. Tuck and M.T. Menzel, The Superperiod of the Nonlinear Weighted String (Fermi-Pasta-Ulam) Problem, Adv. Math. 9:399 (1972).CrossRefGoogle Scholar
  12. 12.
    G. Benettin, Ordered and Chaotic Motions in Dynamical Systems with Many Degrees of Freedom, in Proceedings of the International School of Physics “Enrico Fermi”, Course XCVII, G. Ciccotti and W.G. Hoover, ed., North-Holland, Amsterdam (1986).Google Scholar
  13. 13.
    J.M.T. Thompson and H.B. Stewart, Nonlinear Dynamics and Chaos, Wiley, Chichester (1986).Google Scholar
  14. 14.
    U.C. Singh, P.K. Weiner, J.W. Caldwell, and P.A. Kollman, AMBER (UCSF) version 3.0, Department of Pharmaceutical Chemistry, University of California, San Francisco (1986).Google Scholar
  15. 15.
    B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations, J. Comput. Chem. 4:187 (1983).CrossRefGoogle Scholar
  16. 16.
    W.F. van Gunsteren and H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, BIOMOS, Groningen (1987).Google Scholar
  17. 17.
    R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett. 55:2471 (1985).CrossRefGoogle Scholar
  18. 18.
    R. Car and M. Parrinello, The Unified Approach to Density Functional and Molecular Dynamics in Real Space, Solid State Commun. 62:403 (1987).CrossRefGoogle Scholar
  19. 19.
    R. Car and M. Parrinello, Structural, Dynamical, and Electronic Properties of Amorphous Silicon: An Ab Initio Molecular-Dynamics Study, Phys. Rev. Lett. 60:204 (1988).CrossRefGoogle Scholar
  20. 20.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading (1980).Google Scholar
  21. 21.
    A. Messiah, Quantum Mechanics, North-Holland, Amsterdam (1969).Google Scholar
  22. 22.
    H.J.C. Berendsen and W.F. van Gunsteren, Practical Algorithms for Dynamics Simulations, in Proceedings of the International School of Physics “Enrico Fermi”, Course XCVII, G. Ciccotti and W.G. Hoover, ed., North-Holland, Amsterdam (1986).Google Scholar
  23. 23.
    W.F. van Gunsteren, Classical Molecular Dynamics Simulations: Algorithms and Application, Stochastic Dynamics, and Free Energy, in Mathematical Frontiers in Computational Chemical Physics, D.G. Truhlar, ed., Springer, New York (1988).Google Scholar
  24. 24.
    L. Verlet, Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev. 159:98 (1967).CrossRefGoogle Scholar
  25. 25.
    R.W. Hockney and J.W. Eastwood, Computer Simulations Using Particles, McGraw-Hill, London (1981).Google Scholar
  26. 26.
    C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New York (1971).Google Scholar
  27. 27.
    P.A. Madden, Simulation of Properties of Spectroscopic Interest, in Proceedings of the International School of Physics u “Enrico Fermi”, Course XCVII, G. Ciccotti and W.G. Hoover, ed., North-Holland, Amsterdam (1986).Google Scholar
  28. 28.
    F.F. Abraham, W.E. Rudge, D.J. Auerbach, and S.W. Koch, Molecular-Dynamics Simulations of the Incommensurate Phase of Krypton on Graphite Using More Than 100000 Atoms, Phys. Rev. Lett. 52:445 (1984).CrossRefGoogle Scholar
  29. 29.
    J.C. Tully, Dynamics of Gas-Surface Interactions: 3D Generalized Langevin Model Applied to FCC and BCC Surfaces, J. Chem. Phys. 73:1975 (1980).CrossRefGoogle Scholar
  30. 30.
    S.A. Adelman, Chemical Reaction Dynamics in Liquid Solution, Adv. Chem. Phys. 53:61 (1983).CrossRefGoogle Scholar
  31. 31.
    K. Binder, Introduction: Theory and “Technical” Aspects of Monte Carlo Simulations, in Monte Carlo Methods in Statistical Physics, K. Binder, ed., Springer, Berlin (1986).CrossRefGoogle Scholar
  32. 32.
    J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, and A.J.C. Varandas, Molecular Potential Energy Functions, Wiley, Chichester (1984).Google Scholar
  33. 33.
    A. van der Avoird, P.E.S. Wormer, F. Mulder, and R. Berns, Ab Initio Studies of the Interactions in Van der Waals Molecules, in Topics in Current Chemistry, Vol. 93, F.L. Boschke, ed., Springer, Berlin (1980).Google Scholar
  34. 34.
    W.J. Briels, A.P.J. Jansen, and A. van der Avoird, Dynamics of Molecular Crystals, Adv. Quant. Chem. 18:131 (1986).CrossRefGoogle Scholar
  35. 35.
    W.A. Steele, The Physical Interaction of Gases with Crystalline Solids: I. Gas-Solid Energies and Properties of Isolated Adsorbed Atoms, Surf. Sci. 36:317 (1973).CrossRefGoogle Scholar
  36. 36.
    H. Hoinkes, The Physical Interaction Potential of Gas Atoms with Single-Crystal Surfaces, Determined from Gas-Surface Diffraction Experiments, Rev. Mod. Phys. 52:933 (1980).CrossRefGoogle Scholar
  37. 37.
    G.C. Schatz, Analytical Representation of Electronic Potential-Energy Surfaces, Rev. Mod. Phys. 61:669 (1989).CrossRefGoogle Scholar
  38. 38.
    R. Becker, Theorie der Wärme, Springer, Berlin (1978).Google Scholar
  39. 39.
    D.A. McQuarrie, Statistical Mechanics, Harper, New York (1976).Google Scholar
  40. 40.
    H.C. Andersen, Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys. 72:2384 (1980).CrossRefGoogle Scholar
  41. 41.
    M. Parrinello and A. Rahman, Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, J. Appl. Phys. 52:7182 (1981).CrossRefGoogle Scholar
  42. 42.
    S. Nose and M.L. Klein, Constant Pressure Molecular Dynamics for Molecular Systems, Mol. Phys. 50:1055 (1983).CrossRefGoogle Scholar
  43. 43.
    D.W. Brenner and B.J. Garrison, Gas-Surface Reactions: Molecular Dynamics Simulations of Real Systems, Adv. Chem. Phys. 76:281 (1989).CrossRefGoogle Scholar
  44. 44.
    A.C. Kummel, G.O. Sitz, R.N. Zare, and J.C. Tully, Direct Inelastic Scattering of N2 from Ag(lll). III. Normal incident N2, J. Chem. Phys. 89:6947 (1988).CrossRefGoogle Scholar
  45. 45.
    J.C. Tully, G.H. Gilmer, and M. Shugard, Molecular Dynamics of Surfaces Diffusion. I. The Motion of Adatoms and Clusters, J. Chem. Phys. 71:1630 (1979).CrossRefGoogle Scholar
  46. 46.
    J.C. Tully, Dynamics of Gas-Surface Interactions: Reaction of Atomic Oxygen with Adsorbed Carbon on Platinum, J. Chem. Phys. 73:6333 (1980).CrossRefGoogle Scholar
  47. 47.
    G.-Q. Xu, R.J. Holland, S.L. Bernasek, and J.C. Tully, Dynamics of Cluster Scattering from Surfaces, J. Chem. Phys. 90:3831 (1989).CrossRefGoogle Scholar
  48. 48.
    H. Tal-Ezer and R. Kosloff, An Accurate and Efficient Scheme for Propagating the Time-Dependent Schrödinger Equation, J. Chem. Phys. 81:3967 (1984).CrossRefGoogle Scholar
  49. 49.
    M. Hand and S. Holloway, The Scattering of H2 and D2 from Cu(100): Vibra-tionally Assisted Dissociative Adsorption, Surf. Sci. 211/212:940 (1989).CrossRefGoogle Scholar
  50. 50.
    M. Asscher, O.M. Becker, G. Haase, and R. Kosloff, A Quantum Mechanical Mechanism for the Dissociative Chemisorption of N2 on Metal Surfaces, Surf. Sci. 206:L880 (1988).CrossRefGoogle Scholar
  51. 51.
    G. Haase, M Asscher, and R. Kosloff, The Dissociative Chemisorption Dynamics of N2 on Catalytic Metal Surfaces: A Quantum Mechanical Tunneling Mechanism, J. Chem. Phys. 90:3346 (1989).CrossRefGoogle Scholar
  52. 52.
    E.K. Grimmelmann, J.C. Tully, and E. Helfand, Molecular Dynamics of Infrequent Events: Thermal Desorption of Xenon from a Platinum Surface, J. Chem. Phys. 74:5300 (1981).CrossRefGoogle Scholar
  53. 53.
    J.C. Tully, Dynamics of Gas-Surface Interactions: Thermal Desorption of Ar and Xe from Platinum, Surf. Sci. 111:461 (1981).CrossRefGoogle Scholar
  54. 54.
    C.H. Bennett, Mass Tensor Molecular Dynamics, J. Comput. Phys. 19:267 (1975).CrossRefGoogle Scholar
  55. 55.
    A.P.J. Jansen, Compensating Hamiltonian Method for Chemical Reaction Dynamics: Xe Desorption from Pd(100), J. Chem. Phys. (submitted).Google Scholar
  56. 56.
    K. Wandelt and J.E. Hulse, Xenon Adsorption on Palladium. I. The Homogeneous (110), (100), and (111) Surfaces., J. Chem. Phys. 80:1340 (1984).CrossRefGoogle Scholar
  57. 57.
    J.C. Keck, Variational Theory of Chemical Reaction Rates Applied to Three-Body Recombinations, J. Chem. Phys. 32:1035 (1960).CrossRefGoogle Scholar
  58. 58.
    J.C. Keck, Statistical Investigation of Dissociation Cross-Sections for Diatoms, Discuss. Faraday Soc. 33:173 (1962).CrossRefGoogle Scholar
  59. 59.
    J.C. Keck, Variational Theory of Reaction Rates, Adv. Chem. Phys. 13:85 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. P. J. Jansen
    • 1
  1. 1.Laboratory for Inorganic Chemistry and CatalysisEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations