Bipolaronic Charge Density Waves

  • Serge Aubry
Part of the NATO ASI Series book series (NSSB, volume 264)


It is well-known that the ground-state of models with electron-phonon coupling, may be either a charge density wave (CDW) or a superconductor (SC). For describing CDWs, standard theories require low dimensional models and consider that the Born-Oppenheimer approximation is valid. Then, in the incommensurate case and with the help of some extra approximations, the existence of strictly gapless phonons called phasons is well admitted. However, some years ago, we predicted on the basis of numerical calculations that CDWs with phason modes with a non-zero gap could exist[1,2]. More recently, we noted that because of a tunnelling energy gain allowed by the quantum lattice fluctuations, phase defect energies of CDWs could become negative below the transition by breaking of analyticity when the phason gap is zero or very small[23,4]. Thus, we suggested a conclusion which is very controversial, that CDWs with a strictly zero phason gap should be always unstable against quantum lattice fluctuations. Although the other part of our talk dealing with the concept of anti-integrability is also relevant for understanding bipolaronic CDWs, the reader is refereed to existing publications[5,6] and in preparation[7]. In this short proceeding, we prefer to discuss the most controversial part of this problem and to present new arguments supporting this conjecture. We first briefly describe the theorem which predicts for large enough electron-phonon coupling, the existence of bipolaronic chaotic states for the Holstein model at any dimension, in the adiabatic limit. The ground-state of this model is thus an ordered insulating bipolaronic structure (CDW) with a strictly non zero phason gap. Early numerical observations in one dimension are thus confirmed and extended[1,2].


Unitary Transformation Charge Density Wave Adiabatic Limit Holstein Model Charge Density Wave State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Le Daeron P.Y. and Aubry S. (1983) J. Phys. C16 pp.4827–4838 and b-(1983) J.Physique (Paris) C3 pp.1573–1577 (1983)Google Scholar
  2. [2].
    Aubry S. and Quemerais P. (1989) pp. 295–405 in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides Editor Claire Schlenker Kluwer Academic Publishers GroupGoogle Scholar
  3. [3].
    Aubry S. and Quemerais P.(1989) pp.342–363 Singular Behavior & Nonlinear Dynamics Ed. St. Pnevmatikos, T. Bountis & Sp. Pnevmatikos, World ScientificGoogle Scholar
  4. [4].
    Aubry S., Abramovicig., Feinberg D., Quemerais P. and Raimbault J.L (1989) in Non-Linear Coherent Structures in Physics, Mechanics and Biological Systems Lectures Notes in Physics (Springer) 353 pp. 103–116Google Scholar
  5. Aubry S., Quemerais P. and Raimbault J.L. (1989) inThird European Conference on Low Dimensional Conductors and Superconductors Fisica 21 Supp.3, pp. 98–101 and pp.106–108 (1989) Ed. S. BarisicGoogle Scholar
  6. [5].
    Aubry S. and Abramovici G. (1990) Physica D43 pp.199–219 b-further applications of the concept of anti-integrability can be found in Aubry S. Proceeding of Workshop on Twist Mappings and their Applications March 1990, Minneapolis USAMathSciNetADSGoogle Scholar
  7. [6].
    Aubry S., Gosso J.P., Abramovici G., Raimbault J.L, Quemerais. P. (1990) Physica D in pressGoogle Scholar
  8. [7].
    Aubry S., Abramovici G., Raimbault J.L. and Quemerais P. Bipolaronic Chaotic States in the Adiabatic Holstein Model In preparationGoogle Scholar
  9. [8].
    Abramovici G. (1990) PHD Dissertation University Paris VI (France)Google Scholar
  10. [9].
    Raimbault J.L. (1990) PHD Dissertation University of Nantes (France)Google Scholar
  11. [10].
    Wagner M. (1981) Phys.Stat.sol (b) 107 617ADSCrossRefGoogle Scholar
  12. [11].
    Pouget J.P. (1989) pp.87–157 in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides Editor Claire Schlenker Kluwer Academic Publishers GroupGoogle Scholar
  13. [12].
    Currat R., Monceau P. private communication (experiments performed in Laboratoire Léon Brillouin July 1990)Google Scholar
  14. [13].
    Nozieres P. and Schmitt-Rink S. (1985) J. of Low Temp. Phys. 59 195ADSCrossRefGoogle Scholar
  15. [14].
    Kittel C. (1976) Quantum Theory of Solids Editors John Wiley & SonsGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Serge Aubry
    • 1
  1. 1.Laboratoire Léon BrillouinCEN SaclayGif-sur-Yvette CedexFrance

Personalised recommendations