Localized Excitations in 1-D Peierls-Hubbard Models of Polyacetylene and MX Chains

  • J. Tinka Gammel
Part of the NATO ASI Series book series (NSSB, volume 264)


Recent interest in novel low-D materials — e.g., high-temperature superconducting copper oxides, “heavy-fermion” and charge-density wave systems, halogen-bridged transition-metal linear chain complexes (MX chains), and organic synthetic metals and superconductors — and their pressure, photoexcitation, and doping induced intragap states, has stimulated the theoretical study of competing electron-electron (e-e) and electron-phonon (e-p) interactions in reduced dimensions. For these new materials it is important in microscopic models to capture the essence of both e-p and e-e interactions and to represent faithfully their synergetic, or competing, effects. To this end, variants of the extended Peierls-Hubbard Hamiltonian (ePHH) have been widely used. In this article, intrinsic localized non-linear defects (solitons, polarons, and bipolarons) in 1- and 2-band versions of the 1-D ePHH are discussed and compared to experiments on the conducting polymer trana-polyacetylene, (CH), and on the MX chain [Pt(en)2][Pt(en)2Cl2](ClO4)4 (en=N2C2H8), hereafter referred to as PtCl. Obtaining fits to many different observables with a single set of physically plausible parameters within a given model is essential for a true microscopic understanding of non-linear excitations in any specific material, and in general for an understanding of the whole class of novel low-D materials.


Boundary Condition Average Hole Polaron Quantum Chemical Calculations18 Electron Polaron Symmetry Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review of the ePHH applied to (CH) see: D. Baeriswyl, D.K. Campbell, and S. Mazumdar, to be published in Conducting Polymers, ed. by H. Kiess (Springer, New York, 1990).Google Scholar
  2. 2(a).
    D.K. Campbell, J.T. Gammel, and E.Y. Loh, Jr., to be pub. in the Proc. of the Ann. Adriatico Res. Conf. on Strongly Correl. Electrons, Trieste, Italy, July 18–21, 1989.Google Scholar
  3. 2(b).
    J.T. Gammel, D.K. Campbell, E.Y. Loh, Jr., S. Mazumdar, and S.N. Dixit, to be pub. in the Proc. of the MRS Symp. on Elec, Opt., and Mag. Prop, of Org. Solid State Mater., Boston, MA, Nov. 27- Dec. 2, 1989.Google Scholar
  4. 3.
    A brief summary, including several references, of expected quantum lattice effects in (CH), ignored here, may be found in Ref. 1.Google Scholar
  5. 4.
    S. Pissanetsky, Sparse Matrix Technology (Academic, London, 1984).Google Scholar
  6. 5.
    e.g., V. Waas, H. Büttner, and J. Voit, Phys. Rev. B 41, 9366 (1990).ADSCrossRefGoogle Scholar
  7. 6.
    G.W. Hayden and Z.G. Soos, Phys. Rev. B 38, 6075 (1988).ADSCrossRefGoogle Scholar
  8. 7.
    P. F. Maldague, Phys. Rev. B 16, 2437 (1977).ADSCrossRefGoogle Scholar
  9. 8.
    W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979);ADSCrossRefGoogle Scholar
  10. 8a.
    W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. B 22, 2099 (1980).ADSCrossRefGoogle Scholar
  11. 9.
    B.E. Kohler, C. Spangler, and C. Westerfield, J. Chem. Phys. 133, A171 (1964).Google Scholar
  12. 10.
    J. Bernasconi, M.J. Rice, W.R. Schneider, and S. Strässler, Phys. Rev. B 12, 1090 (1975).ADSCrossRefGoogle Scholar
  13. 11.
    H.J. Keller, in Extended Linear Chain Compounds, ed. by J.S. Miller (Plenum Press, New York, 1982), Vol. 1, p. 357.CrossRefGoogle Scholar
  14. 12.
    R.J.H. Clark, in Advances in Infrared and Raman Spectroscopy, ed. by R.J.H. Clark and R.E. Hester (Wiley Heyden, New York, 1984), Vol. 11, p. 95Google Scholar
  15. 13.
    B. I. Swanson, M. A. Stroud, S. D. Conradson, and M. H. Zeitlow, Solid State Commun. 65, 1405 (1988).ADSCrossRefGoogle Scholar
  16. 14.
    H. Toftlund and O. Simonsen, Inorg. Chem. 23, 4261 (1984);CrossRefGoogle Scholar
  17. 14a.
    K. Toriumi, Y. Wada, T. Mitani, and S. Bandow, J. Amer. Chem. Soc. 111, 2341 (1989).CrossRefGoogle Scholar
  18. 15.
    e.g., Proceedings of the IBM Europe Institute 1988 Workshop on High Temperature Superconductivity, Oberlech, Austria (August 1988), ed. by K.A. Mueller: IBM J. Res. Dev. 33, (1989).Google Scholar
  19. 16.
    D. Baeriswyl and A. R. Bishop, Physica Scripta T19, 239 (1987);ADSCrossRefGoogle Scholar
  20. 16a.
    D. Baeriswyl and A. R. Bishop, J. Phys. C: Solid State Phys. 21, 339 (1988);ADSCrossRefGoogle Scholar
  21. 16b.
    S. D. Conradson, M. A. Stroud, M. H. Zeitlow, B. I. Swanson, D. Baeriswyl, and A. R. Bishop. Solid State Commun. 65, 723 (1988).ADSCrossRefGoogle Scholar
  22. 17.
    J.T. Gammel, R.J. Donohoe, A.R. Bishop, and B.I. Swanson, Phys. Rev. B, to be published.Google Scholar
  23. 18.
    C.A. Boyle, P.J. Hay, and R.L. Martin, unpublished.Google Scholar
  24. 19.
    S. Kurita, M. Haruki, and K. Miyagawa, J. Phys. Soc. Japan 57, 1789 (1988);ADSCrossRefGoogle Scholar
  25. 19a.
    L. Degiorgi, P. Wachter, M. Haruki, and S. Kurita, Phys. Rev. B 40, 3285 (1989).ADSCrossRefGoogle Scholar
  26. 20.
    R. J. Donohoe, S. A. Ekberg, C. D. Tait and B. I. Swanson, Solid State Commun. 71, 49 (1989).ADSCrossRefGoogle Scholar
  27. 21.
    R. J. Donohoe, R. B. Dyer, and B. I. Swanson, Solid State Commun., in press.Google Scholar
  28. 22.
    J. E. Hirsch and F. Marsigilio, Phys. Rev. B 39, 11515 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. Tinka Gammel
    • 1
    • 2
  1. 1.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations