Advertisement

Exact Free Energy of a KSSH Model in d-Dimensions

  • Arianna Montorsi
  • Mario Rasetti
Part of the NATO ASI Series book series (NSSB, volume 264)

Abstract

The K.S.S.H.-like model one obtains when taking into account spin-non-conserving spin-orbit interactions in the hamiltonian, has been shown to be exactly solvable in any number of dimensions for a particular choice of the coupling constant describing the hopping process amplitude. Here we review in details the solution and we discuss the behavior of the free energy.

Keywords

Partition Function Canonical Partition Function Repulsion Term Dynamical Algebra Electron Occupation Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Montorsi, and M. Rasetti, submitted to Phys. Rev. Letters Google Scholar
  2. [2]
    S. Kivelson, W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 58, 1899(1987)Google Scholar
  3. [3]
    For a discussion of the relevance of the bond-charge repulsion term, see: D. Baeriswyl, P. Horsch, and K. Maki, Phys. Rev. Lett. 60, 70 (1988) J. T. Gammel, and D.K. Campbell, ibid., page 71 S. Kivelson, W.P. Su, J.R. Schrieffer, and A.J. Heeger, ibid., page 72ADSCrossRefGoogle Scholar
  4. [4]
    J.E. Hirsch, Physica C 158, 326 (1989)Google Scholar
  5. [5]
    A. Montorsi, and M. Rasetti, in preparation Google Scholar
  6. [6]
    D.C. Mattis, The theory of magnetism 1, Springer Verlag, Berlin, 1981, chapter 6CrossRefGoogle Scholar
  7. [7]
    J. Riordan, Combinatorial Identities, J. Wiley & Sons, New York, 1968, p. 183Google Scholar
  8. [8]
    A. Montorsi, and M. Rasetti, Mod. Phys. Letters B 4, 613 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Arianna Montorsi
    • 1
  • Mario Rasetti
    • 1
  1. 1.Dipartimento di Fisica, Unitá I.N.F.M.Politecnico di TorinoTorinoItaly

Personalised recommendations